
Getting Started in Python
(and MRSimulator)

P. J. Grandinetti*

L’Ohio State Univ.

NMR Winter School, 2024

*Email: grandinetti.1@osu.edu, web: www.grandinetti.org

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 1 / 28

Introduction to Python

Python is a high-level, interpreted programming language created by Guido van Rossum and first
released in 1991.

Python is Interpreted: The interpreter processes Python at runtime. You do
not need to compile your program before executing it.

Python is Interactive: You can sit at a Python prompt and interact with the
interpreter directly to write your programs.

Python is Object-Oriented: Python supports an Object-Oriented style or
programming technique that encapsulates code within objects.

Python is a great language for beginner-level programmers and supports
developing a wide range of applications, from simple text processing to
WWW browsers to games.

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 2 / 28

https://www.python.org

Popular Python Libraries for Data Analysis and Scientific Computing
Jupyter Notebook: A web application that allows the creation and sharing of documents
containing live code, equations, visualizations, and narrative text.

NumPy: Provides support for arrays, matrices, and many mathematical functions.

Matplotlib: A plotting library for creating static, animated, and interactive visualizations.

Pandas: High-level data structures and functions designed for working with structured or tabular
data.

SciPy: Used for scientific and technical computing. It builds on NumPy and provides additional
modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal
and image processing, ODE solvers, and more.

Scikit-learn: A machine learning library featuring various classification, regression, and clustering
algorithms.

TensorFlow and PyTorch: Popular libraries for creating deep learning models.

Statsmodels: Provides classes and functions for the estimation of many different statistical
models and for conducting statistical tests and statistical data exploration.

Seaborn: A statistical data visualization library based on Matplotlib.

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 3 / 28

https://jupyter.org
https://numpy.org
https://matplotlib.org
https://pandas.pydata.org
https://scipy.org
https://scikit-learn.org
https://www.tensorflow.org
https://pytorch.org

PyPI: The Python Package Index

The Python Package Index (PyPI) is a software repository for the Python programming language.

Package Hosting: PyPI helps you find and install software
developed and shared by the Python community.

Tool Integration: PyPI is compatible with all major package
management and installation tools like pip and conda.

Wide Variety: PyPI hosts many packages for various tasks,
including web development, data analysis, machine learning,
scientific computing, automation, and more.

Open Source Contribution: PyPI allows developers to share their
software and collaborate on open-source projects, making it a hub
for Python development.

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 4 / 28

https://pypi.org

Dependency Hell: A Challenge in Software Use and Development
Dependency Hell occurs when a software application cannot access the additional programming libraries
required to operate.

Conflicting Dependencies: Different parts of project depend on incompatible versions of same
library.

Nested Dependencies: A dependency of your project has its own dependencies, which in turn
have their own dependencies, and so on, leading to a complex and hard-to-manage tree of
dependencies.

Missing Dependencies: Project depends on library that is no longer maintained or available.

Environment Differences: The project works in one environment but not in another due to
differences in the versions of the dependencies installed in each environment.

Solution: use virtual environments to isolate your project’s dependencies
from those of other projects.

Each project can have its own dependencies, even if they require different versions of the same package.
Python’s built-in venv module allows you to create virtual environments, and there are also third-party
tools like virtualenv and conda.

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 5 / 28

Download and Install Visual Studio Code (VSCode)

Language Support: VSCode supports various programming languages with syntax
highlighting, bracket-matching, auto-indentation, box-selection, snippets, and more.

IntelliSense: VSCode provides smart completions based on variable types, function
definitions, and imported modules.

Git Integration: VSCode has built-in Git support for version control to track
changes, stage, commit, pull, and push to a remote repository.

Debugging: VSCode has an integrated debugger, so you can set breakpoints, inspect
variables, view call stack, and execute code step by step.

Extensions: VSCode has a rich ecosystem of extensions for enhancing its
functionality, including linters, debuggers, formatters, new themes, and language
support.

Install Extensions
▶ Python, Pylance by Microsoft
▶ Jupyter, Jupyter Cell Tags, Jupyter Kemap, Jupyter Slide Show by Microsoft
▶ GitHub Pull Requests and Issues, Github Copilot, Github Copilot Chat

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 6 / 28

https://code.visualstudio.com/

Download and Install Miniconda

Miniconda is a free minimal installer for conda, a package and environment management system.

Lightweight: Miniconda is small and quickly installed. It provides only conda and its
dependencies, making it suitable for environments with limited disk space or for users who do not
need the full distribution of Anaconda.

Package Management: Miniconda uses the Conda package manager like Anaconda. This lets
you install packages from the Anaconda distribution and the Python Package Index (PyPI).

Environment Management: Conda allows you to create separate environments containing files,
packages, and their dependencies that will not interact with other environments.

Flexibility: With Miniconda, you can create a minimal, self-contained Python installation and
then use the Conda command to install only the necessary packages.

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 7 / 28

https://docs.conda.io/projects/miniconda/en/latest/

GitHub: A Platform for Collaborative Coding
GitHub is a web-based hosting service for version control using Git. It is mainly used for computer code.

Version Control: GitHub hosts your code and keeps track of all changes made to every
file.

Collaboration: GitHub allows multiple people to work on the same project efficiently.
It provides features like issues and pull requests to discuss and review changes before
merging.

Open Source Contribution: Many open-source projects use GitHub to accept
contributions, report issues, and disseminate information.

Integration: GitHub integrates with many services and tools, such as continuous
integration services and project management tools.

GitHub Pages: GitHub allows you to host websites directly from a GitHub repository.

Sign up for Github

Use your university email address for GitHub Student Developer Pack.

Download and install Github Desktop

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 8 / 28

https://github.com
https://education.github.com/pack

ChatGPT: A Language Model by OpenAI

ChatGPT is a large-scale, AI-based language model developed by OpenAI.

Generative Pre-training Transformer (GPT): ChatGPT is based on the GPT model,
which is trained on a diverse range of internet text.

Conversational Agent: ChatGPT is designed to generate human-like text based on the
input it’s given, making it suitable for tasks like drafting emails, writing code, creating
written content, tutoring, translating languages, simulating characters for video games,
and more.

Fine-tuning: After pre-training, ChatGPT is fine-tuned with human supervision on
specific tasks for better performance.

Applications: ChatGPT has been used to build applications like AI Dungeon, a
text-based adventure game, and GitHub Copilot, an AI pair programmer.

Use it as your personal Python tutor, and to write simple scripts.

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 9 / 28

Breakout Session: Getting Started with Python

1. Signup for GitHub, and install Github Desktop

2. Install VSCode and extensions

3. Install Miniconda

4. Create a virtual environment

5. Create a Jupyter Notebook and run a simple Python script

6. Ask ChatGPT for help writing Python scripts,
e.g., ”Write a Python script to fit my NMR inversion recovery data.”

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 10 / 28

How can I get started with mrsimulator?

pip install mrsimulator

pip install pydantic==1.10 → temporary fix until mrsimulator 0.8 is released.

A Python toolbox for simulating
 solid-state NMR spectra

rsimu ator

SimulateCreate
Spin systems

Select or
Create

Methods1
2

3

inside Jupyter Notebook∗: ”!pip install mrsimulator” and ”!pip install pydantic==1.10”

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 11 / 28

Deepansh Srivastava
Hyperfine Grandinetti Lab 2023

Calvin Bostleman,
Lexi McCarthy,
Zack Boothe,
Modeste Tegomoh,
Matthew Giammar,
Dustin Pigg.

Email: grandinetti.1@osu.edu https://www.grandinetti.org/Software

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 12 / 28

mrsimulator Script Example - 1. Create SpinSystem - Sites

Import the Site and SymmetricTensor classes
from mrsimulator import Site
from mrsimulator.spin_system.tensors import SymmetricTensor

Create the Site objects
H_site = Site(isotope="1H")

C_site = Site(isotope="13C",
isotropic_chemical_shift=100.0, # in ppm
shielding_symmetric=SymmetricTensor(zeta=70.0, eta=0.5))

my_sites = [H_site, C_site]

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 13 / 28

mrsimulator Script Example - 1. Create SpinSystem - Coupling

Import the Coupling class
from mrsimulator import Coupling

Create the Coupling object
coupling = Coupling(site_index=[0, 1], dipolar=SymmetricTensor(D=-2e4)) # D in Hz

Import the SpinSystem class
from mrsimulator import SpinSystem

Create the SpinSystem object
spin_system = SpinSystem(sites=my_sites, couplings=[coupling])

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 14 / 28

mrsimulator Script Example - 2. Create Method

Import the BlochDecaySpectrum class
from mrsimulator.method.lib import BlochDecaySpectrum
from mrsimulator.method import SpectralDimension

Create a BlochDecaySpectrum object
method = BlochDecaySpectrum(

channels=["13C"],
magnetic_flux_density=9.4, # in T
rotor_angle=54.735 * 3.14159 / 180, # in rad (magic angle)
rotor_frequency=3000, # in Hz
spectral_dimensions=[

SpectralDimension(
count=2048,
spectral_width=80e3, # in Hz
reference_offset=6e3, # in Hz
label=r"13C resonances",

)
],

)

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 15 / 28

mrsimulator Script Example - 3. Create Simulator and Run

Import the Simulator class
from mrsimulator import Simulator

Create a Simulator object
sim = Simulator(spin_systems=[spin_system], methods=[method])
sim.run()

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 16 / 28

mrsimulator Script Example - Create SignalProcessor to add line
broadening

from mrsimulator import signal_processor as sp

Create the SignalProcessor object
processor = sp.SignalProcessor(

operations=[
sp.IFFT(),
sp.apodization.Exponential(FWHM="200 Hz"),
sp.FFT(),

]
)

Apply the processor to the simulation dataset
processed_simulation = processor.apply_operations(dataset=sim.methods[0].simulation)

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 17 / 28

Matplotlib - Python library for creating static, animated, and interactive visualizations
https://matplotlib.org

import matplotlib.pyplot as plt
plt.figure()
ax = plt.subplot(projection="csdm")
ax.plot(processed_simulation.real)
ax.invert_xaxis()
plt.savefig("plot.pdf")
plt.show()

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 18 / 28

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 19 / 28

mrsimulator has pre-built specialized Methods for easier setup

BlochDecaySpectrum - Bloch Decay 1D spectrum

BlochDecayCTSpectrum - Bloch Decay 1D spectrum of quadrupolar central transition

ThreeQ VAS - 3-quantum 2D spectrum of half-integer quadrupoles

FiveQ VAS - 5-quantum 2D spectrum of half-integer quadrupoles

SevenQ VAS - 7-quantum 2D spectrum of half-integer quadrupoles

ST1 VAS - 1st inner satellite transition 2D spectrum of half-integer quadrupoles

ST2 VAS - 2nd inner satellite transition 2D spectrum of half-integer quadrupoles

SSB2D - Finite to infinite MAS speed correlation 2D spectrum, i.e., 2D PASS, 2D MAT.

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 20 / 28

Efficient 1D and 2D tenting algorithms for anisotropic spectra
87Rb Switched-Angle Spinning of Rb2CrO4,

Shore et al., J. Chem. Phys., 105, 9412 (1996)

sas = Method(channels=["87Rb"], magnetic_flux_density=4.2,
rotor_frequency=np.inf,
spectral_dimensions=[

SpectralDimension(count=256,
spectral_width=1.5e4, # in Hz
reference_offset=-5e3, # in Hz
label="70.12 dimension",
events=[

SpectralEvent(rotor_angle=70.12 * 3.14159 / 180,
transition_queries=[

{"ch1": {"P": [-1], "D": [0]}}])]),
SpectralDimension(count=512,

spectral_width=15e3, # in Hz
reference_offset=-7e3, # in Hz
label="MAS dimension",
events=[

SpectralEvent(rotor_angle=54.74 * 3.14159 / 180,
transition_queries=[

{"ch1": {"P": [-1], "D": [0]}}])]),
],

)

Experiment

Simulation

Simulation time: 40 milliseconds
P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 21 / 28

Breakout Session: Simulating Spectra

Simulating Protein GB1, 13C and 15N MAS spectra

Simulating spectrum of amorphous sample - using single site system generator

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 22 / 28

https://t.ly/sxmdV
http://tinyurl.com/bdnap84v

Solve least-squares problems with mrsimulator + LMFit
https://lmfit.github.io/lmfit-py

rsimu ator LMFIT

27Al MAS NMR of
Yttrium Aluminum Garnet

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 23 / 28

Three steps in least-squares calculations with mrsimulator + LMFit

First, Import the experimental spectrum.

import csdmpy as csdm
from mrsimulator.utils import get_spectral_dimensions
from mrsimulator import Site, SpinSystem
from mrsimulator.spin_system.tensors import SymmetricTensor
from mrsimulator.methods import BlochDecaySpectrum
from mrsimulator import signal_processor as sp

host = "https://nmr.cemhti.cnrs-orleans.fr/Dmfit/Help/csdm/"
filename = "27Al Quad MAS YAG 400MHz.csdf"
experiment = csdm.load(host + filename)
sigma = 0.4895381 # standard deviation of noise from the dataset
experiment = experiment.real # For spectral fitting, use real part of the complex dataset
experiment.x[0].to("ppm", "nmr_frequency_ratio") # Convert coordinates from Hz to ppm.

get the count, spectral_width, and reference_offset information from the experiment.
spectral_dims = get_spectral_dimensions(experiment)

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 24 / 28

Three steps in least-squares calculations with mrsimulator + LMFit
Second: Setup the Spin System, Method, and Simulation.

Al_1 = Site(isotope="27Al",isotropic_chemical_shift=76,
quadrupolar=SymmetricTensor(Cq=6e6, eta=0.0))

Al_2 = Site(isotope="27Al",isotropic_chemical_shift=1,
quadrupolar=SymmetricTensor(Cq=5e5, eta=0.3))

spin_systems = [SpinSystem(sites=[Al_1],name="AlO4"),SpinSystem(sites=[Al_2], name="AlO6")]

MAS = BlochDecaySpectrum(channels=["27Al"], magnetic_flux_density=9.395,
rotor_frequency=15250, spectral_dimensions=spectral_dims,
experiment=experiment) # add the measurement to the method.

sim = Simulator(spin_systems=spin_systems, methods=[MAS])
sim.config.decompose_spectrum = "spin_system"
sim.run()

processor = sp.SignalProcessor(operations=[sp.IFFT(), sp.apodization.Gaussian(FWHM="300 Hz"),
sp.FFT(), sp.Scale(factor=50)])

processed_dataset = processor.apply_operations(dataset=sim.methods[0].simulation).real

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 25 / 28

Three steps in least-squares calculations with mrsimulator + LMFit

Last: Create LMFit parameters from Simulator and SignalProcessor, and minimize!

from mrsimulator.utils import spectral_fitting as sf

params = sf.make_LMFIT_params(sim, processor, include={"rotor_frequency"})

from lmfit import Minimizer
minner = Minimizer(sf.LMFIT_min_function, params, fcn_args=(sim, processor, sigma))
result = minner.minimize()

With mrsimulator+LMFit, you can simultaneously fit spectra from different methods for a single set of
spin system parameters.

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 26 / 28

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 27 / 28

Breakout Session: Fitting Spectra

Fitting 13C MAS sidebands of glycine.

P. J. Grandinetti* (L’Ohio State Univ.) Getting Started in Python NMR Winter School, 2024 28 / 28

https://t.ly/87QpQ

