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Enhanced Sensitivity in RIACT/MQ-MAS NMR Experiments
Using Rotor Assisted Population Transfer

H.-T. Kwak,∗ S. Prasad,∗ Z. Yao,∗ P. J. Grandinetti,∗,1 J. R. Sachleben,† and L. Emsley‡
∗Department of Chemistry and †Campus Chemical Instrumentation Center, Ohio State University, Columbus, Ohio 43210-1173; and ‡Laboratoire de
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The rotor assisted population transfer (RAPT) sequence is used
to enhance the sensitivity of theRIACT(II) experiment forspin-3/2
quadrupolar nuclei. A detailed theoretical analysis of the polariza-
tions that contribute to different types of MQ-MAS experiments
is provided. In particular, two polarization pathways are distin-
guished for the creation of triple-quantum coherence. The existence
of these pathways is experimentally demonstratedby comparing the
sensitivities of different sequences with and without RAPT prepa-
ration. C© 2001 Academic Press
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1. INTRODUCTION

Solid-state NMR of quadrupolar nuclei has undergone a re-
naissance in the past decade startingwith techniques such as dou-
ble rotation (DOR) (1) and dynamic angle spinning (DAS) (2– 4)
which provided high-resolution isotropic spectra of quadrupolar
nuclei for the first time, followed by the subsequent introduction
of the transition correlated magic-angle spinning experiments:
multiple-quantum MAS (MQ-MAS) (5, 6) and satellite tran-
sition MAS (ST-MAS) (7). From a mechanical point of view
the transition correlated magic-angle spinning experiments are
easier techniques to implement experimentally as they can be
performed with most commercial MAS probes and have gained
the most widespread use. While all these techniques are wel-
come additions to the solid-state NMR spectroscopist’s toolbox,
the inherently low sensitivity of many quadrupolar nuclei still
remains an obstacle to their full exploitation.
Although it was understood quite early in the history of NMR

that the polarization of the central transition of quadrupolar nu-
clei can be enhanced by transferring polarization from the satel-
lite transitions (8), attention was only focused on this possibility
when Haase and Conradi (9) developed a technique for selective
inversion of the outer satellite transitions using frequency swept
adiabatic passages to enhance the central transition by a factor of
2I in static samples. Kentgens andVerhagen (10) later employed

1 To whom correspondence should be addressed. E-mail: grandinetti.1@
osu.edu.

amplitude-modulated double-frequency adiabatic sweeps to en-
hance the central transition polarization in samples under both
static and MAS conditions. More recently, we devised a simple
technique called RAPT (rotor assisted population transfer) (11)
where a fast 180◦ phase alternating pulse train during magic-
angle spinning is used to prepare a selectively excited state in
which the populations of all eigenstates |m〉with the same sign of
m are equal, resulting in an enhanced centralm = −1/2 → 1/2
transition polarization. In general, a theoretical maximum en-
hancement factor of I + 1/2 can be obtained with this selective
“saturation” of the satellite transitions. Although polarization
enhancement by selective saturation of the satellite transitions
does not provide as much of an enhancement as selective inver-
sion, nevertheless it has the important advantage over selective
inversion that it can be performed under sample rotation and
obtained for all crystallite orientations simultaneously.
Such enhancement schemes can be easily combined with

high-resolution solid-state techniques such as DOR and DAS,
since these techniques draw their coherences from the polariza-
tion of the central transition. In contrast, understanding the effect
of these schemes in combination with MQ-MAS experiments
requires an understanding of the polarization source for coher-
ences in MQ-MAS, which will in turn depend on the particular
pulse scheme used to prepare the multiple-quantum coherence.
For example, in both the traditional high-power single-pulse
(6, 12–14) scheme and the more recent low-power rotary res-
onance (FASTER) single-pulse (15) preparation method, the
resulting triple-quantum coherence comesmainly from the equi-
librium polarization associated with the m = ±3/2 states. In
contrast, in the rotationally induced adiabatic coherence transfer
(RIACT (II)) scheme (16) the triple-quantum coherence comes
from the equilibriumpolarization associatedwith them = ±1/2
states. Thus, it should be straightforward to apply schemes like
RAPT to enhance the sensitivity of RIACT(II) experiments, but
RAPT should actually reduce the sensitivity of MQ-MAS se-
quences that draw their coherences from the equilibrium polar-
ization associated with the m = ±3/2 states.
In this paper we experimentally demonstrate that the applica-

tion of RAPT before RIACT(II) does indeed improve the sen-
sitivity of the RIACT(II) experiment by a factor of 2 in the
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spin-3/2 system. In addition, we also apply RAPT before a con-
ventional MQ-MAS sequence and demonstrate that the sensi-
tivity is reduced as predicted.

2. EXPERIMENTAL

All NMR spectra were acquired at 9.4 T (130.93697 MHz
87Rb frequency) with a Bruker DMX 400 spectrometer, using a
Bruker 4-mmMAS probehead, capable of achieving a radiofre-
quency nutation rate (ν1) of 175 kHz. A bandpass filter was used
in between the probe and the ADC to reduce the reflecting volt-
age from the probe caused by the high-power RAPT pulse train.
The solid-state 87Rb resonance of RbCl was used to calibrate the
radiofrequency field strength and also as the external frequency
reference (δRbCl = 0).The sampleused todemonstrate theutility
of the new experiments was polycrystalline RbClO4, which has
87Rb quadrupolar coupling parameters (17) of Cq = 3.2 MHz
and ηq = 0.21. The shifted-echo hypercomplex method (18)
was used in acquiring and processing all two-dimensional data.
The effective T1 of the 87Rb central transition in RbClO4 was
measured to be 145 ms using a saturation recovery experiment.
All experiments were performed using a 1-s recycle delay and a
spinning speed of 12 kHz. The 200-ns delay between each pulse
in the X -X̄ pulse train of RAPT was used to allow time for the
transmitter phase to stabilize. The X -X̄ pulse lengths were equal
and were optimized experimentally. The inverse of the total time
to complete one X -X̄ interval (including the 200-ns delays) is
defined as the RAPT modulation frequency, νm .

3. THEORY

To demonstrate how the mechanisms for triple-quantum
preparation differ between single-pulse preparation and RI-
ACT(II), we now look at these two mechanisms from a more
theoretical perspective. In general, we will consider two possi-
ble polarization sources for the triple-quantum coherence, the
polarization associated with the m = ±3/2 states and the po-
larization associated with the m = ±1/2 states. In other words,
starting with a density operator of ρ = Iz = 3I1−4z + I2−3z ,
and using the single transition operator notation (19, 20), we
consider two polarization sources for generating triple-quantum
coherence,

3I1−4z
R1−4x−→ 3I1−4y .

I2−3z
R2−3x−→ I1−4y .

Because the first rotation utilizes the greater equilibrium po-
larization of the 1– 4 transition, we call it the “greater path”
to distinguish it from the second that converts the lesser equi-
librium polarization of the 2–3 transition into I1−4y . While the
greater path has the potential to provide three times the triple-
quantum coherence of the lesser path, it should be noted that

the relaxation time needed for the 1–4 transition to return to its
equilibrium value may be different than that for the 2–3 transi-
tion.
In the discussion that followswewill consider evolution under

a Hamiltonian containing the first-order quadrupolar and the
radiofrequency interactions:

H̃/h– = ωq A2,0(�q )T2,0 − ω1Ix ,

where A2,0(�q ) is an element of an irreducible spherical ten-
sor which in its principal axis system (PAS) has the values
ρ2,0 = 1/

√
6 and ρ2,±2 = ρ2,0 ·ηq/

√
6. Here ηq is the quadrupo-

lar coupling asymmetry parameter, and �q are the Euler an-
gles (α, β, γ ) between the lab frame and the PAS frame. The
quadrupolar coupling constant is given by Cq = e2qQ/h (or
e2qQ/(4πε0h) in SI units) and the quadrupolar splitting by
ωq = 6πCq/2I (2I − 1).

3.1. Single-Pulse Triple-Quantum Preparation

On the basis of earlier work on multiple quantum excita-
tion in solids (19, 20) it was first assumed in MQMAS articles
(6, 12) that triple-quantum coherence would be created at a rate
proportional to ω31/ω2Q and come from the polarization associ-
ated with the 1–4 transition. This assumption was based on a
perturbation expansion of the eigenstates and eigenvalues in the
limit that |ω1| � |WQ(�q )| leading to the approximate rotating
frame Hamiltonian for a spin I = 3/2 system of

H̃/h– ≈ g−WQ(�q )
(
I1−2z − I3−4z

)

− (1− g+)ω1I1−4x − (1+ g+)ω1I2−3x , [1]

where WQ(�q ) =
√
6ωq A2,0(�q ) and g± is written in a series

expansion in the low RF limit as

g− = 1+ 3
2

ω21
W 2

Q
+ 3
8

ω41
W 4

Q
− 57
16

ω61
W 6

Q
+ 867
128

ω81
W 8

Q
+ · · · ,

g+ = 1− 3
2

ω21
W 2

Q
+ 15
8

ω41
W 4

Q
+ 21
16

ω61
W 6

Q
− 1893
128

ω81
W 8

Q
+ · · · .

The presence of I1−4x in this approximate Hamiltonian clearly
shows that triple-quantumcoherence canbe createdby taking the
“greater path,” that is, I1−4z of our equilibrium density operator
into I1−4y at a nutation frequency of (1− g+)ω1, that is,

Tr
{
e−(i/h–)H̃tIze(i/h

–)H̃tI1−4y
} = 3

2
sin[(1− g+)ω1t].

In this approximation a zeroth-order expansion of the eigenvec-
tors for this Hamiltonian in the low RF power limit was used
without restricting its eigenvalues to obtain the effective rotating
frame Hamiltonian (see Appendix A.1).
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Subsequent numerical studies (21), however, showed that
in the short pulse limit the triple-quantum oscillations in a poly-
crystalline sample occurred at a faster rate that is proportional
to ω1 and not ω31/ω2Q . Clearly, a different subset of crystal-
lite orientations than those with |ω1| � |WQ(�q )| was con-
tributing more significantly to the total triple-quantum coher-
ence created by a single pulse. Although the ω31/ω2Q assumption
is not valid, it does not follow that the polarization source of
the triple-quantum coherence is not the m= ±3/2 states. Thus,
in order to determine the major polarization source for triple-
quantum coherence generated by a single pulse in a polycrys-
talline sample we have performed numerical simulations as a
function of quadrupole coupling constant with a constant RF
field strength of ω1/2π = 100 kHz and sample spinning speed
of ωR/2π = 10 kHz starting with three different initial density
operators of ρ(0) = I2−3z , ρ(0) = 3I1−4z , and ρ(0) = Iz . These
results are shown in Fig. 1 for three cases having quadrupolar

FIG. 1. Creation of triple-quantum coherence starting from the three differ-
ent initial density matrices, ρ(0) = I2−3z (solid black line), ρ(0) = 3I1−4z (solid
black line), and ρ(0) = Iz (solid gray line) as a function of pulse duration with
ηq = 0 and a constant RF field strength of ω1/2π = 100 kHz and spinning
speed of ωR/2π = 10 kHz. In (A) Cq = 2.5 MHz, (B) Cq = 1.5 MHz, and
(C) Cq = 0.5 MHz. All simulations were based on a full numerical density
matrix calculation and were averaged over 3722 crystallite orientations. The
continuous motion of the rotor was approximated by discretizing each rotor pe-
riod into 512 smaller time-independent periods, according to standard methods
(22).

coupling constants of Cq = 0.5, 1.5, and 2.5 MHz. In all plots
the triple-quantum coherence created from an initial density op-
erator of ρ(0) = Iz is shown as a thick gray line, and the triple-
quantum coherence created from ρ(0) = I2−3z and ρ(0) = 3I1−4z
is shown as black lines.
In general, the evolution of the triple-quantum coherence gen-

erated from ρ(0) = Iz more closely follows the ρ(0) = 3I1−4z
curve, except at very short pulse lengths where it more closely
follows the ρ(0) = I2−3z curve. Clearly, the most signifi-
cant triple-quantum intensity is generated at the longer pulse
lengths where the majority of the coherence is drawn from
the equilibrium polarization associated with the m = ±3/2
states. Thus, assuming that the majority of MQ-MAS experi-
ments would be performed under such optimized conditions,
we conclude that the single-pulse triple-quantum preparation in
MQ-MAS generally follows the greater path of triple-quantum
excitation.

3.2. RIACT Triple-Quantum Preparation

While the ideas in the previous section were based on earlier
theories of multiple-quantum dynamics in static samples, the
ideas employed in RIACT (16) for triple-quantum excitation are
based on the theory of spin locking of quadrupolar nuclei under
magic-angle spinning as first described by Vega (23). In this
section we present a brief overview of this theory as described
by Baltisberger et al. (24).
In the case of RF excitation in a rotating sample where the

pulse length is not short compared to the rotor period, we trans-
form into the time-dependent diagonal frame andwrite the prop-
agator in the rotating frame as

U(t, 0) = V(t) · T · e− i
h–
∫ t
0 [D(s) + ih–V̇†(s)V(s)] ds · V†(0),

where T is the Dyson time ordering operator and V(t) is the
transformation that diagonalizes the Hamiltonian at time t ac-
cording to

D(t) = V†(t)H(t)V(t).

When ‖D(t)‖ � ‖iV̇†(t)V(t)‖ we can apply the adiabatic ap-
proximation (in our specific case, there are no diagonal compo-
nents in iV̇†(t)V(t), thus we can neglect this contribution in the
adiabatic approximation) and write our propagator as

U(a)(t, 0) = V(t) · e− i
h–
∫ t
0 D(s)ds · V†(0). [2]

Conversely, when ‖iV̇†(t)V(t)‖ � ‖D(t)‖ we can apply the
sudden approximation and write our propagator as

U(s)(t, 0) = V(t) · e
∫ t
0 V̇

†(s)V(s)ds · V†(0). [3]

In the case of RF excitation of a second-order broadened



74 KWAK ET AL.

FIG. 2. Plots of 2ξ1−3(t) and 2ξ2−4 t as a function of the rotor phase
for a crystallite spinning about the magic angle (54.74◦) with PAS oriented
perpendicular to the rotor, using Cq = 2.5 MHz, ηq = 0.0.

quadrupolar nucleus under currently available sample spinning
speeds, we will find that at any given instant nuclei in nearly
all crystallite orientations can be described using the adiabatic
approximation, and it is only when WQ(�(t)) passes through
zero that we will we need to consider other possibilities.
In the case of a spin I = 3/2 system experiencing the first-

order quadrupolar and RF interactions, we can use the ex-
act analytical diagonalization (25, 19) and obtain (see the
Appendix)

D(t) = ω1

2
(E1−3 − E2−4)− ω1−3I1−3z − ω2−4I2−4z [4]

and

iV̇†(t)V(t) = 2ξ̇ 2−4(t)I2−4y + 2ξ̇ 1−3(t)I1−3y . [5]

Fig. 2 shows a plot of the values of 2ξ 1−3 and 2ξ 2−4, the angles
in the 1–3 and 2–4 subspaces, respectively, needed to diagonal-
ize the Hamiltonian, as a function of the rotor phase for those
crystallites that undergo the largest excursion ofWQ(�q (t)) dur-
ing this period. Note that for a majority of the period 2ξ 1−3 and
2ξ 2−4 have values near either 0 or π .
The size of iV̇†(t)V(t) is related to the rate of change of the

eigenstates and has the form of Lorenztian impulse functions as
follows:

2ξ̇ 1−3(t) =
√
3ω1ωQ

[ω1 − ωQ A2,0(t)]2 + 3ω21
· d A2,0(t)

dt

and

2ξ̇ 2−4(t) =
√
3ω1ωQ

[ω1 + ωQ A2,0(t)]2 + 3ω21
· d A2,0(t)

dt
.

Plots of 2ξ̇ 1−3(t) and 2ξ̇ 2−4(t) as a function of rotor period
are shown in Fig. 3. Notice that the iV̇†(t)V(t) terms are only
nonnegligible near the zero crossings of WQ(�(t)). To indicate

whether a zero crossing is in the adiabatic intermediate, or sud-
den regime, an adiabaticity parameter (24) is defined as

α = − ω1−3(tzero)
2ξ̇ 1−3(tzero)

= ω2−4(tzero)
2ξ̇ 2−4(tzero)

= a(�′
q , t) ·

ω21
ωQωR

,

where

1√
2a(�′

q , t)
= 1

ωR

d A2,0(t)
dt

= −i
∑
k ′ �=0

k ′e−ik ′(ωRt+α)d (2)k ′,0(βR) A2,k ′ (�′
q ).

This definition of the adiabaticity parameter is similar to the
one used by Vega (23); however, now there is an additional
orientation dependence which comes from the time derivative
of A20(t). When the value of α is much larger than, much less
than, or on the order of 1, the zero crossing will be adiabatic,
sudden, or intermediate, respectively.
While the sudden approximation does not hold for all times,

the terms 2ξ̇ 1−3(t), and 2ξ̇ 2−4(t) have the form of an impulse
function with an integrated area of π centered near the zero
crossing of WQ(�(t)). This can result in a rapid transition be-
tween the adiabatic propagator of Eq. [2] and the sudden prop-
agator of Eq. [3].

FIG. 3. Plots of diagonal and off-diagonal coefficients ω1−3, ω2−4,
2ξ̇1−3(t), and 2ξ̇2−4(t) of the time-dependent effective Hamiltonian in Eqs.
[4] and [5], as a function of the rotor phase for a crystallite spinning at
ωR/2π = 12.5 kHz about the magic angle (54.74◦) with PAS oriented per-
pendicular to the rotor and Cq = 2.5 MHz, ηq = 0.0. In (A) an RF field
strength of ω1/2π = 200 kHz is used and the adiabatic approximation holds
at the zero crossing of the quadrupolar splitting. In (B) an RF field strength
of ω1/2π = 50 kHz is used and the sudden approximation holds at the zero
crossing of the quadrupolar splitting.
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Crystallites which pass through the zero crossing in neither
an adiabatic nor a sudden regime fall into the intermediate
regime. This type of evolution is the most difficult to calculate
analytically. To determine the evolution of the density matrix
in the interemediate regime, contributions from both D(t) and
V̇†(t)V(t), which do not commute at all times, must be used to
construct the propagator. Vega (23) has shown with numerical
simulations that spins undergoing an intermediate regime zero
crossing evolve into non-spin-locked states and thus result in a
significant loss of CP intensity.

3.2.1. RIACT—Adiabatic passage. Using this theoretical
framework we now examine the RIACT mechanism (16) for
transferring coherence between the triple-quantum and single-
quantum central transition states. In the adiabatic approximation
we can ignore the term iV̇†(t)V(t) at all times and therefore use
Eq. [2]. Vega (23) showed that the coherences I1−4x and I2−3x
will interconvert with every zero crossing of WQ(�(t)) under
an RF spin lock in the adiabatic limit. This can be seen using
the equation above and propagating I2−3x under the adiabatic
propagator with the RF pulse along x to obtain

ρ(t) = U(a)x (t, 0) · I2−3x · U(a)†x (t, 0)

= Vx (t) · exp
{

− i
h–

∫ t

0
D(s) ds

}

· V†
x (0) · I2−3x · Vx (0) · exp

{
i
h–

∫ t

0
D(s) ds

}

· V†
x (t).

If we start (arbitrarily) the spin lock at a point where 2ξ1 ≈
2ξ2 ≈ 0 (i.e., |WQ(�q )| � |ω1| and WQ(�q ) > 0), then the
innermost sandwich in our propagator yields

V†
x (2ξ1 ≈ 2ξ2 ≈ 0) · I2−3x · Vx (ξ1 ≈ ξ2 ≈ 0) = I2−3z

Since I2−3z commutes with the Hamiltonian in the diago-
nal frame we have no evolution of I2−3z due to UD(t, 0) =

exp{−(i/h–) ∫ t
0 D(s) ds}. If we turn off the RF spin lock pulse

after WQ(�q ) changes sign due to the rotor motion, then the
transformation out of the time-dependent diagonal frame occurs
with 2ξ1 ≈ 2ξ2 ≈ π (i.e., |WQ(�q )| � |ω1| and WQ(�q ) < 0)
and we have

ρ(t) = Vx (2ξ1 ≈ 2ξ2 ≈ π ) · I2−3z · V†
x (2ξ1 ≈ 2ξ2 ≈ π ) = I1−4x .

Thus we see that with every zero crossing in WQ(�(t)) the cen-
tral transition I2−3x coherence is converted into triple-quantum
I1−4x . Similarly, one can also show that with every zero crossing
I1−4x is converted into I2−3x , that is,

I2−3x
U(a)x (t,0)←−−→ I1−4x .

Of course, the same behavior is observed if we apply our spin
lock on coherences along the y axis, that is,

I2−3y
U(a)y (t,0)←−−→ I1−4y .

In contrast, all coherences or populations orthogonal to the RF
spin lock direction will evolve and will thus lead to rapid de-
phasing in a polycrystalline or amorphous sample.
This mechanism for interconversion between triple-quantum

and central transition coherence with each zero crossing of WQ
not only forms the basis of RIACT for MQ-MAS preparation
and excitation but also plays an important role during cross-
polarization experiments inMAS (26), DAS (24), andMQ-MAS
(27–30).

3.3. The RAPT Effect

Finally, we note that the effect of the RAPT sequence is to
prepare the initial density operator in a state that enhances the
polarization of the central (m = ±1/2) transition at the expense
of triple-quantum (m = ±3/2) polarization,

ρ = 3I1−4z + I2−3z
RAPT−→ 2I1−4z + 2I2−3z ,

the impact of this rearrangement being that the sensitivity of
experiments like RIACT which draw their triple-quantum co-
herence from the central transition will be enhanced by a factor
of 2, while those like the conventional single-pulse MQ-MAS
experiment will be diminished by a factor of 2/3.

4. RESULTS AND DISCUSSION

In light of the above discussion we investigated the effect of a
RAPT preparation sequence optimized for the central transition
of 87Rb in RbClO4 on the sensitivity of the RIACT(II) MQ-
MAS experiment, as well as on the conventional single-pulse
excitation and mixing MQ-MAS experiment.
Using the RAPT enhanced RIACT(II) sequence, which was

constructed by simply placing the RAPT preparation sequence
(11) in front of theRIACT(II) sequence (16) as shown in Fig. 4A,
an experimental enhancement factor of 1.8 was obtained. The
spectrum of Fig. 4A was obtained with an RF field strength of
170 kHz, a modulation frequency (νm) of 695 kHz, and a RAPT
pulse train duration of 90.7µs,which is close to one rotor period,
τr = 83.3 µs. The length of the selective central transition exci-
tation pulse was 0.75 µs, and the spin-lock pulse was 20.83 µs,
which is τr/4, as specified by Wu et al. (16). The interval τ
between the RAPT preparation was increased to approximately
0.4 ms to act as a z-filter, eliminating all transverse coherences
and the need to modify the RIACT(II) phase cycle.
The experimental enhancement factor of 1.8 is very close

to the theoretical value of I + 1/2 = 2, showing the good
agreement with theory. Moreover, it is particularly important to
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notice that the anisotropic MQ-MAS lineshape observed using
the RAPT enhancement is undistorted with respect to the con-
ventional RIACT(II) experiment, indicating that all crystallites
in the sample are affected in the same way by the RAPT prepa-
ration. The anisotropic cross sections are shown in Fig. 4B for
the RIACT(II) experiment with RAPT preparation (shown as
a solid line) and without RIACT(II) preparation (shown as a
dashed line). The lack of distortion in the enhanced lineshape is
one of the key advantages of this method.
To ensure that our theoretical understanding outlined in the

previous section is correct, the effect of the RAPT preparation
on the conventional MQ-MAS experiment was also investigated
by placing the RAPT pulse train before the conventional MQ-
MAS pulse sequence, as shown in Fig. 5A. For this experiment,
the RF field strength used for the RAPT preparation and the
conventional MQ-MAS sequence sequence was 170 kHz. The
experimentally optimized excitation pulse length was 6 µs, and
the conversion pulse length was 5.5 µs.
In this case we see from the anisotropic lineshapes of Fig. 5B

an experimental reduction in signal using the RAPT prepara-
tion by a factor of 0.6, which is in close agreement with the
factor of 2/3 predicted by theory in the previous section. Thus,
these experimental demonstrations tend to strongly support our

FIG. 4. (A) RIACT(II) pulse sequence with RAPT preparation. (B) A
comparison of the anisotropic projections from the ω2 dimension of the 87Rb
RIACT(II) experiment in polycrystalline RbClO4 with (solid line) and without
(dashed line) the RAPT preparation. A total of 64 t1 points with 15-µs incre-
ments were acquired with τ set to 20 rotor periods and the spinning rate to
12 kHz. The spectrum was zero filled once in the t2 and t1 domains. A factor of
1.8 sensitivity enhancement was achieved by applying RAPT preparation before
RIACT(II).

FIG. 5. (A) MQ-MAS pulse sequence with RAPT preparation. (B) A com-
parison of the anisotropic projections from the ω2 dimension of the 87Rb
MQ-MAS experiment in polycrystalline RbClO4 with (solid line) and with-
out (dashed line) the RAPT preparation. A total of 64 t1 points with 15-µs
increments were acquired with τ set to 20 rotor periods and the spinning rate to
12 kHz. The spectrum was zero filled once in the t2 and t1 domains. In this ex-
ample the experimental sensitivity is diminished by a factor of 0.6 in MQ-MAS
using the RAPT preparation.

theoretical interpretation of the mechanisms of these experi-
ments in terms of the greater and lesser paths.

5. CONCLUSION

We have provided a detailed analysis of the polarizations
that contribute to different types of MQ-MAS experiments.
We distinguish two preparation pathways to create triple-
quantum coherence, the first from outer transition polarization
and the second from inner transition polarization. These path-
ways are dubbed the greater and lesser paths, respectively. We
find that “conventional” single-pulse preparation MQ-MAS se-
quences principally benefit from the greater path, while se-
quences of the RIACT type utilize predominantly the lesser
path.
In light of this discussion we have proposed the combina-

tion of the RAPT preparation sequence with RIACT(II) and we
achieve an experimental factor of 1.8 sensitivity enhancement
without significant changes in the RIACT(II) anisotropic line-
shape.
In contrast we also demonstrate that, as predicted, the applica-

tion of the RAPT pulse train in front of conventional MQ-MAS
leads to a factor of 0.6 sensitivity reduction.
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APPENDIX

A.1. Diaginalization of the I = 3/2 Rotating Frame
Hamiltonian During RF Irradiation

In this Appendix we examine the diagonalization of the ro-
tating frame Hamiltonian for a quadrupolar coupled I = 3/2
during RF irradiation. Our starting Hamiltonian is

H̃/h– = ωq A2,0(	q )T2,0 − ω1Ix .

For I = 3/2, this Hamiltonian can be written in terms of
fictitious spin half operators (19, 20, 31)

H/h– = WQ(	q )
(
I1−2z −I3−4z

)−
√
3ω1

(
I1−2x + I3−4x

) − 2ω1I2−3x ,

where WQ(	q ) = √
6ωq A2,0(	q ). This Hamiltonian can be

diagonalized (19, 25) using the transformation

V(2ξ 1−3, 2ξ 2−4) = ei
π
2 I
1−4
y e−i π

2 I
2−3
y e2iξ 1−3I1−3y e2iξ 2−4I2−4y ,

with

tan(2ξ 1−3) = −√
3ω1

WQ(	q )− ω1 ,
[A.1]

tan(2ξ 2−4) = −√
3ω1

WQ(	q )+ ω1 .

In this diagonal frame we have

D = V†HV = 1
2
f−WQ(	q )(E1−4 − E2−3)

+ ω1
[
(1− f+)I1−4z − (1+ f+)I2−3z

]
,

where

f− = ω2−4(ω1)− ω1−3(ω1)
2WQ(	q )

f+ = ω2−4(ω1)+ ω1−3(ω1)
2ω1

or, written in terms of double-quantum operators,

D = 1
2
ω1(E1−3 − E2−4)− ω1−3I1−3z − ω2−4I2−4z ,

where

ω1−3 = −
√
3ω21 + (WQ(	q )− ω1)2

= −( f−WQ(	q )− f+ω1),

ω2−4 =
√
3ω21 + (WQ(	q )+ ω1)2 = f−WQ(	q )+ f+ω1.

A.1.1. Perturbation Expansion in the Low ω1 Limit
The analytical solution given above can be used to obtain

a series expansion about the low RF power limit (i.e., about
ω1 = 0) for the eigenvectors to obtain

cos 2ξ 1−3(ω1) = WQ(	q )√
WQ(	q )2

[
1+ 0− 3

2
ω21

WQ(	q )2

− 3ω31
WQ(	q )3

− 9
8

ω41
WQ(	q )4

+ 15
2

ω51
WQ(	q )5

+ · · ·
]
,

sin 2ξ 1−3(ω1) = WQ(	q )√
WQ(	q )2

[
0−

√
3ω1

WQ(	q )
−

√
3ω21

WQ(	q )2

+
√
3
2

ω31
WQ(	q )3

+ 7
√
3
2

ω41
WQ(	q )4

+ 37
√
3

8
ω51

WQ(	q )5
+ · · ·

]
,

and

cos 2ξ 2−4(ω1) = WQ(	q )√
WQ(	q )2

[
1+ 0− 3

2
ω21

WQ(	q )2

+ 3ω31
WQ(	q )3

− 9
8

ω41
WQ(	q )4

− 15
2

ω51
WQ(	q )5

+ · · ·
]
,

sin 2ξ 2−4(ω1) = WQ(	q )√
WQ(	q )2

[
0−

√
3ω1

WQ(	q )
+

√
3ω21

WQ(	q )2

+
√
3
2

ω31
WQ(	q )3

− 7
√
3
2

ω41
WQ(	q )4

+ 37
√
3

8
ω51

WQ(	q )5
+ · · ·

]
.

and for the the eigenvalues we obtain

f± = WQ√
W 2

Q

g±,

where

g− = 1+ 3
2

ω21
W 2

Q
+ 3
8

ω41
W 4

Q
− 57
16

ω61
W 6

Q
+ 867
128

ω81
W 8

Q
+ · · ·

g+ = 1− 3
2

ω21
W 2

Q
+ 15
8

ω41
W 4

Q
+ 21
16

ω61
W 6

Q
− 1893
128

ω81
W 8

Q
+ · · ·
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An important simplification afforded by these expansions is
that coherence transfer efficiency during a pulse is determined
entirely by the eigenvectors, while the nutation frequency is
determined entirely by the eigenvalues. Therefore, we are not
required to use expansions of equal order for both the eigen-
values, f±, and the eigenvectors, 2ξ 1−3 and 2ξ 2−4, in order to
obtain accurate predictions for the transfer efficiency and nuta-
tion frequency during the preparation and mixing periods.
To first order the angles 2ξ 1−3 and 2ξ 2−4 are equal, and to ze-

roth order they are equal to either zero orπ depending on the sign
of WQ . When WQ > 0 we transform our diagonal Hamiltonian
back to the rotating frame using 2ξ 1−3 = 2ξ 2−4 = 0, and when
WQ < 0 we transform our diagonal Hamiltonian back to the ro-
tating frame using 2ξ 1−3 = 2ξ 2−4 = π . In both cases the final
result is

H ≈ g−WQ
(
I1−2z − I3−4z

) − (1− g+)ω1I1−4x − (1+ g+)ω1I2−3x .

A.2. Operator Transformations Between Rotating
and Diagonal Frame

A.2.1. Transformations from the Rotating Frame into the
Diagonal Frame for the Spin I = 3/2 Case

V†I1−4± V = 1
2
(I1−4± − I1−4∓ ) cos ξ 2−4 cos ξ 1−3

+ 1
2
(I2−3± − I2−3∓ ) sin ξ 2−4 sin ξ 1−3

− 1
2
(I1−2± − I1−2∓ ) sin ξ 2−4 cos ξ 1−3

+ 1
2
(I3−4± − I3−4∓ ) cos ξ 2−4 sin ξ 1−3

− 1
2
I2−4x sin 2ξ 2−4 − 1

2
I1−3x sin 2ξ 1−3

− I1−4z cos2 ξ 1−3 cos2 ξ 2−4

+ I2−3z sin2 ξ 1−3 sin2 ξ 2−4

− I1−2z cos2 ξ 1−3 sin2 ξ 2−4

− I3−4z sin2 ξ 1−3 cos2 ξ 2−4

V†I2−3± V = 1
2
(I1−4± − I1−4∓ ) sin ξ 2−4 sin ξ 1−3

+ 1
2
(I2−3± − I2−3∓ ) cos ξ 2−4 cos ξ 1−3

+ 1
2
(I1−2± − I1−2∓ ) cos ξ 2−4 sin ξ 1−3

− 1
2
(I3−4± − I3−4∓ ) sin ξ 2−4 cos ξ 1−3

+ 1
2
I2−4x sin 2ξ 2−4

+ 1
2
I1−3x sin 2ξ 1−3 + I2−3z cos2 ξ 1−3 cos2 ξ 2−4

− I1−4z sin2 ξ 1−3 sin2 ξ 2−4

− I1−2z sin2 ξ 1−3 cos2 ξ 2−4

− I3−4z cos2 ξ 1−3 sin2 ξ 2−4

V†I2−3z V = −1
2
(I2−3+ + I2−3− ) cos ξ 2−4 cos ξ 1−3

+ 1
2
(I1−4+ + I1−4− ) sin ξ 2−4 sin ξ 1−3

+ 1
2
(I1−2+ + I1−2− ) cos ξ 2−4 sin ξ 1−3

− 1
2
(I3−4+ + I3−4− ) sin ξ 2−4 cos ξ 1−3

V†I1−4z V = −1
2
(I1−4+ + I1−4− ) cos ξ 2−4 cos ξ 1−3

− 1
2
(I2−3+ + I2−3− ) sin ξ 2−4 sin ξ 1−3

− 1
2
(I1−2+ + I1−2− ) cos ξ 2−4 sin ξ 1−3

+ 1
2
(I3−4+ + I3−4− ) sin ξ 2−4 cos ξ 1−3

A.2.2. Transformations from the Diagonal Frame into the
Rotating Frame for the Spin I = 3/2 Case

VI2−3+ V†

= 1
2
(I2−3+ − I2−3− ) cos ξ 1−3 cos ξ 2−4 − I2−3z cos ξ 1−3 cos ξ 2−4

+ 1
2
(I1−4+ − I1−4− ) sin ξ 1−3 sin ξ 2−4 − I1−4z sin ξ 1−3 sin ξ 2−4

+ 1
2
(I1−2+ cos ξ 1−3 sin ξ 2−4 + I1−2− sin ξ 1−3 cos ξ 2−4)

− 1
2
(I3−4+ + sin ξ 1−3 cos ξ 2−4 + I3−4− cos ξ 1−3 sin ξ 2−4)

− 1
2
(I2−4+ sin ξ 1−3 cos ξ 2−4 − I2−4− cos ξ 1−3 sin ξ 2−4)

− 1
2
(I1−3+ cos ξ 1−3 sin ξ 2−4 − I1−3− sin ξ 1−3 cos ξ 2−4)

VI2−3− V† = −1
2
(I2−3+ − I2−3− ) cos ξ 1−3 cos ξ 2−4

− I2−3z cos ξ 1−3 cos ξ 2−4

− 1
2
(I1−4+ − I1−4− ) sin ξ 1−3 sin ξ 2−4

− I1−4z sin ξ 1−3 sin ξ 2−4 + 1
2
(I1−2+ sin ξ 1−3 cos ξ 2−4
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+ I1−2− cos ξ 1−3 sin ξ 2−4)− 1
2
(I3−4+ cos ξ 1−3 sin ξ 2−4

+ I3−4− sin ξ 1−3 cos ξ 2−4)+ 1
2
(I2−4+ cos ξ 1−3 sin ξ 2−4

− I2−4− sin ξ 1−3 cos ξ 2−4)+ 1
2
(I1−3+ sin ξ 1−3 cos ξ 2−4

− I1−3− cos ξ 1−3 sin ξ 2−4)

VI2−3z V†

=
1
4
(I2−3+ + I2−3− )(cos2 ξ 1−3 + cos2 ξ 2−4)

+
1
2
E2−3(cos2 ξ 2−4 − cos2 ξ 1−3)

+
1
4
(I1−4+ + I1−4− )(sin2 ξ 1−3 + sin2 ξ 2−4)

+E1−4(sin2 ξ 2−4 − sin2 ξ 1−3)

+
1
4
(I1−2+ + I1−2− )(cos ξ 1−3 sin ξ 1−3 − cos ξ 2−4 sin ξ 2−4)

+
1
4
(I3−4+ + I3−4− )(cos ξ 1−3 sin ξ 1−3 − cos ξ 2−4 sin ξ 2−4)

− 1
4
(I2−4+ + I2−4− )(cos ξ 1−3 sin ξ 1−3 + cos ξ 2−4 sin ξ 2−4)

− 1
4
(I1−3+ + I1−3− )(cos ξ 1−3 sin ξ 1−3 + cos ξ 2−4 sin ξ 2−4)

VI1−4+ V†

=
1
2
(I1−4+ − I1−4− ) cos ξ 1−3 cos ξ 2−4

+ I1−4z cos ξ 1−3 cos ξ 2−4

+
1
2
(I2−3+ − I2−3− ) sin ξ 1−3 sin ξ 2−4 + I2−3z sin ξ 1−3 sin ξ 2−4

+
1
2
(I1−2+ cos ξ 1−3 sin ξ 2−4 + I1−2− sin ξ 1−3 cos ξ 2−4)

− 1
2
(I3−4+ sin ξ 1−3 cos ξ 2−4 + I3−4+ cos ξ 1−3 sin ξ 2−4)

+
1
2
(I2−4+ sin ξ 1−3 cos ξ 2−4 − I2−4− cos ξ 1−3 sin ξ 2−4)

+
1
2
(I1−3+ cos ξ 1−3 sin ξ 2−4 − I1−3− sin ξ 1−3 cos ξ 2−4)

VI1−4− V†

= −1
2
(I1−4+ − I1−4− ) cos ξ 1−3 cos ξ 2−4

+ I1−4z cos ξ 1−3 cos ξ 2−4 − 1
2
(I2−3+

− I2−3− ) sin ξ 1−3 sin ξ 2−4 + I2−3z sin ξ 1−3 sin ξ 2−4

+
1
2
(I1−2+ sin ξ 1−3 cos ξ 2−4 + I1−2− cos ξ 1−3 sin ξ 2−4)

− 1
2
(I3−4+ cos ξ 1−3 sin ξ 2−4 + I3−4+ sin ξ 1−3 cos ξ 2−4)

− 1
2
(I2−4+ cos ξ 1−3 sin ξ 2−4 − I2−4− sin ξ 1−3 cos ξ 2−4)

− 1
2
(I1−3+ sin ξ 1−3 cos ξ 2−4 − I1−3− cos ξ 1−3 sin ξ 2−4)

VI1−4z V†

= − 1
4
(I1−4+ + I1−4− )(cos2 ξ 1−3 + cos2 ξ 2−4)

− 1
2
E1−4(cos2 ξ 2−4 − cos2 ξ 1−3)

− 1
4
(I2−3+ + I2−3− )(sin2 ξ 1−3 + sin2 ξ 2−4)

−E2−3(sin2 ξ 2−4 − sin2 ξ 1−3)

+
1
4
(I1−2+ + I1−2− )(cos ξ 1−3 sin ξ 1−3 − cos ξ 2−4 sin ξ 2−4)

+
1
4
(I3−4+ + I3−4− )(cos ξ 1−3 sin ξ 1−3 − cos ξ 2−4 sin ξ 2−4)

− 1
4
(I2−4+ + I2−4− )(cos ξ 1−3 sin ξ 1−3 + cos ξ 2−4 sin ξ 2−4)

− 1
4
(I1−3+ + I1−3− )(cos ξ 1−3 sin ξ 1−3 + cos ξ 2−4 sin ξ 2−4)
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ERRATUM
Volume 150, Number 1 (2001), in article “Enhanced Sensitivity in RIACT/MQ-

MAS NMR Experiments Using Rotor Assisted Population Transfer,” by H.-T. Kwak,
S. Prasad, Z. Yao, P. J. Grandinetti, J. R. Sachleben, and L. Emsley, pages 71–80 (doi:
10.1006/jmre.2001.2313): On page 78, the equations in Appendix A.2.1 should read

V†I1–4± V = −I1–4z cos2 ξ 2–4 + I2–3z sin2 ξ 1–3 + I1–2z (cos2 ξ 2–4 − cos2 ξ 1–3)

− I1–3x cos ξ 1–3 sin ξ 1–3 − I2–4x cos ξ 2–4 sin ξ 2–4 ± iI1–4y cos ξ 1–3 cos ξ 2–4

∓ iI1–2y cos ξ 1–3 sin ξ 2–4 ± iI3–4y sin ξ 1–3 cos ξ 2–4 ± iI2–3y sin ξ 1–3 sin ξ 2–4

V†I2–3± V = I2–3z cos2 ξ 2–4 − I1–4z sin2 ξ 1–3 + I3–4z (cos2 ξ 2–4 − cos2 ξ 1–3)

+ I1–3x cos ξ 1–3 sin ξ 1–3 + I2–4x cos ξ 2–4 sin ξ 2–4 ± iI2–3y cos ξ 1–3 cos ξ 2–4

± iI1–2y sin ξ 1–3 cos ξ 2–4 ∓ iI3–4y cos ξ 1–3 sin ξ 2–4± iI1–4y sin ξ 1–3 sin ξ 2–4

V†I1–4z V = I1–4x cos ξ 1–3 cos ξ 2–4 − I2–3x sin ξ 1–3 sin ξ 2–4

− I1–2x cos ξ 1–3 sin ξ 2–4 + I3–4x sin ξ 1–3 cos ξ 2–4

V†I2–3z V = −I2–3x cos ξ 1–3 cos ξ 2–4 + I1–4x sin ξ 1–3 sin ξ 2–4

+ I1–2x sin ξ 1–3 cos ξ 2–4 − I3–4x cos ξ 1–3 sin ξ 2–4

instead of

V†I1–4± V = 1
2
(I1–4± − I1–4∓ ) cos ξ 2–4 cos ξ 1–3 + 1

2
(I2–3± − I2–3∓ ) sin ξ 2–4 sin ξ 1–3

− 1
2
(I1–2± − I1–2∓ ) sin ξ 2–4 cos ξ 1–3 + 1

2
(I3–4± − I3–4∓ ) cos ξ 2–4 sin ξ 1–3

− 1
2
I2–4x sin 2ξ 2–4 − 1

2
I1–3x sin 2ξ 1–3 − I1–4z cos2 ξ 1–3 cos2 ξ 2–4

+ I2–3z sin2 ξ 1–3 sin2 ξ 2–4 − I1–2z cos2 ξ 1–3 sin2 ξ 2–4 − I3–4z sin2 ξ 1–3 cos2 ξ 2–4

V†I2–3± V = 1
2
(I1–4± − I1–4∓ ) sin ξ 2–4 sin ξ 1–3 + 1

2
(I2–3± − I2–3∓ ) cos ξ 2–4 cos ξ 1–3

+ 1
2
(I1–2± + I1–2∓ ) cos ξ 2–4 sin ξ 1–3 − 1

2
(I3–4± − I3–4∓ ) sin ξ 2–4 cos ξ 1–3

+ 1
2
I2–4x sin 2ξ 2–4 + 1

2
I1–3x sin 2ξ 1–3 + I2–3z cos2 ξ 1–3 cos2 ξ 2–4

− I1–4z sin2 ξ 1–3 sin2 ξ 2–4 − I1–2z sin2 ξ 1–3 cos2 ξ 2–4 − I3–4z cos2 ξ 1–3 sin2 ξ 2–4

V†I2–3z V = −1
2
(I2–3+ + I2–3− ) cos ξ 2–4 cos ξ 1–3 + 1

2
(I1–4+ + I1–4− ) sin ξ 2–4 sin ξ 1–3

+ 1
2
(I1–2+ + I1–2− ) cos ξ 2–4 sin ξ 1–3 − 1

2
(I3–4+ + I3–4− ) sin ξ 2–4 cos ξ 1–3
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V†I1–4z V = 1
2
(I1–4+ + I1–4− ) cos ξ 2–4 cos ξ 1–3 − 1

2
(I2–3+ + I2–3− ) sin ξ 2–4 sin ξ 1–3

− 1
2
(I1–2+ + I1–2− ) cos ξ 2–4 sin ξ 1–3 + 1

2
(I3–4+ + I3–4− ) sin ξ 2–4 cos ξ 1–3.

On pages 78 and 79, the equations in Appendix A.2.2 should read:

VI2–3± V† = −(
I2–3z ∓ iI2–3y

)
cos ξ 1–3 cos ξ 2–4 − (

I1–4z ∓ iI1–4y
)
sin ξ 1–3 sin ξ 2–4

+ 1
2
(I1–2± − I3–4∓ ) cos ξ 1–3 sin ξ 2–4 − 1

2
(I1–3± − I2–4∓ ) cos ξ 1–3 sin ξ 2–4

+ 1
2
(I1–2∓ − I3–4± ) sin ξ 1–3 cos ξ 2–4 + 1

2
(I1–3± − I2–4± ) sin ξ 1–3 cos ξ 2–4

VI2–3z V† = I1–4x + 1
2
(
I2–3x − I1–4x

)
(cos2 ξ 1–3 + cos2 ξ 2–4)

+ 1
2
(
I1–2x + I3–4x

)
cos ξ 1–3 sin ξ 1–3 − 1

2
(
I1–2x + I3–4x

)
cos ξ 2–4 sin ξ 2–4

+ 1
2
(
I1–2z − I3–4z

)
(cos2 ξ 1–3 − cos2 ξ 2–4)− 1

2
(
I1–3x + I2–4x

)
cos ξ 1–3 sin ξ 1–3

− 1
2
(
I1–3x + I2–4x

)
cos ξ 2–4 sin ξ 2–4

VI1–4± V† = (I1–4z ± iI1–4y
)
cos ξ 1–3 cos ξ 2–4 + (

I2–3z ± iI2–3y
)
sin ξ 1–3 sin ξ 2–4

+ 1
2
(I1–2± − I3–4∓

)
cos ξ 1–3 sin ξ 2–4 + 1

2
(I1–3± − I2–4∓ ) cos ξ 1–3 sin ξ 2–4

+ 1
2
(I1–2∓ − I3–4± ) sin ξ 1–3 cos ξ 2–4 − 1

2
(
I1–3∓ − I2–4∓ ) sin ξ 1–3 cos ξ 2–4

VI1–4z V† = −I2–3x − 1
2
(
I1–4x − I2–3x

)
(cos2 ξ 1–3 + cos2 ξ 2–4)

+ 1
2
(
I1–2x + I3–4x

)
cos ξ 1–3 sin ξ 1–3 − 1

2
(
I1–2x + I3–4x

)
cos ξ 2–4 sin ξ 2–4

+ 1
2
(
I1–2z − I3–4z

)
(cos2 ξ 1–3 − cos2 ξ 2–4)− 1

2
(
I1–3x + I2–4x

)
cos ξ 1–3 sin ξ 1–3

− 1
2
(
I1–3x + I2–4x

)
cos ξ 2–4 sin ξ 2–4

instead of

VI2–3+ V† = 1
2
(I2–3+ − I2–3− ) cos ξ 1–3 cos ξ 2–4− I2–3z cos ξ 1–3 cos ξ 2–4

+ 1
2
(I1–4+ − I1–4− ) sin ξ 1–3 sin ξ 2–4 − I1–4z sin ξ 1–3 sin ξ 2–4

+ 1
2
(I1–2+ cos ξ 1–3 sin ξ 2–4 + I1–2− sin ξ 1–3 cos ξ 2–4)

− 1
2
(I3–4+ sin ξ 1–3 cos ξ 2–4 + I3–4− cos ξ 1–3 sin ξ 2–4)

− 1
2
(I2–4+ sin ξ 1–3 cos ξ 2–4 − I2–4− cos ξ 1–3 sin ξ 2–4)

− 1
2
(I1–3+ − cos ξ 1–3 sin ξ 2–4 − I1–3− sin ξ 1–3 cos ξ 2–4)
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VI2–3− V† = −1
2
(I2–3+ − I2–3− ) cos ξ 1–3 cos ξ 2–4− I2–3z cos ξ 1–3 cos ξ 2–4

− 1
2
(I1–4+ − I1–4− ) sin ξ 1–3 sin ξ 2–4− I1–4z sin ξ 1–3 sin ξ 2–4

+ 1
2
(I1–2+ sin ξ 1–3 cos ξ 2–4 + I1–2− cos ξ 1–3 sin ξ 2–4)− 1

2
(I3–4+ cos ξ 1–3 sin ξ 2–4

+ I3–4− sin ξ 1–3 cos ξ 2–4)+ 1
2
(I2–4+ cos ξ 1–3 sin ξ 2–4− I2–4− sin ξ 1–3 cos ξ 2–4)

+ 1
2
(I1–3+ sin ξ 1–3 cos ξ 2–4− I1–3− cos ξ 1–3 sin ξ 2–4)

VI2–3z V† = 1
4
(I2–3+ + I2–3− )(cos2 ξ 1–3 + cos2 ξ 2–4)+ 1

2
E2–3(cos2 ξ 2–4− cos2 ξ 1–3)

+ 1
4
(I1–4+ + I1–4− )(sin2 ξ 1–3 + sin2 ξ 2–4)+E1–4(sin2 ξ 2–4− sin2 ξ 1–3)

+ 1
4
(I1–2+ + I1–2− )(cos ξ 1–3 sin ξ 1–3− cos ξ 2–4 sin ξ 2–4)

+ 1
4
I3–4+ + I3–4− )(cos ξ 1–3 sin ξ 1–3− cos ξ 2–4 sin ξ 2–4)

− 1
4
(I2–4+ + I2–4− )(cos ξ 1–3 sin ξ 1–3 + cos ξ 2–4 sin ξ 2–4)

− 1
4
(I1–3+ + I1–3− )(cos ξ 1–3 sin ξ 1–3 + cos ξ 2–4 sin ξ 2–4)

VI1–4+ V† = 1
2
(I1–4+ − I1–4− ) cos ξ 1–3 cos ξ 2–4 + I1–4z cos ξ 1–3 cos ξ 2–4

+ 1
2
(I2–3+ − I2–3− ) sin ξ 1–3 sin ξ 2–4 + I2–3z sin ξ 1–3 sin ξ 2–4

+ 1
2
(I1–2+ cos ξ 1–3 sin ξ 2–4 + I1–2− sin ξ 1–3 cos ξ 2–4)− 1

2
(I3–4+ sin ξ 1–3 cos ξ 2–4

+ I3–4− cos ξ 1–3 sin ξ 2–4)+ 1
2
(I2–4+ sin ξ 1–3 cos ξ 2–4− I2–4− cos ξ 1–3 sin ξ 2–4)

+ 1
2
(I1–3+ cos ξ 1–3 sin ξ 2–4− I1–3− sin ξ 1–3 cos ξ 2–4)

VI1–4− V† = −1
2
(I1–4+ − I1–4− ) cos ξ 1–3 cos ξ 2–4 + I1–4z cos ξ 1–3 cos ξ 2–4

− 1
2
(I2–3+ − I2–3− ) sin ξ 1–3 sin ξ 2–4 + I2–3z sin ξ 1–3 sin ξ 2–4

+ 1
2
(I1–2+ sin ξ 1–3 cos ξ 2–4 + I1–2− cos ξ 1–3 sin ξ 2–4)− 1

2
(I3–4+ cos ξ 1–3 sin ξ 2–4

+ I3–4− sin ξ 1–3 cos ξ 2–4)− 1
2
(I2–4+ cos ξ 1–3 sin ξ 2–4− I2–4− sin ξ 1–3 cos ξ 2–4)

− 1
2
(I1–3+ sin ξ 1–3 cos ξ 2–4− I1–3− cos ξ 1–3 sin ξ 2–4)

VI1–4z V† = −1
4
(I1–4+ + I1–4− )(cos2 ξ 1–3 + cos2 ξ 2–4)− 1

2
E1–4 (cos2 ξ 2–4− cos2 ξ 1–3)

− 1
4
(I2–3+ + I2–3− ) (sin2 ξ 1–3 + sin2 ξ 2–4)−E2–3(sin2 ξ 2–4− sin2 ξ 1–3)
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+ 1
4
(I1–2+ + I1–2− )(cos ξ 1–3 sin ξ 1–3− cos ξ 2–4 sin ξ 2–4)

+ 1
4
(I3–4+ + I3–4− )(cos ξ 1–3 sin ξ 1–3− cos ξ 2–4 sin ξ 2–4)

− 1
4
(I2–4+ + I2–4− )(cos ξ 1–3 sin ξ 1–3 + cos ξ 2–4 sin ξ 2–4)

− 1
4
(I1–3+ + I1–3− )(cos ξ 1–3 sin ξ 1–3 + cos ξ 2–4 sin ξ 2–4).

The corrections do not change the conclusions of the paper.


