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Recent methodological advances have made it possible to measure fine structure on the order of a
few hertz in the nuclear magnetic resonance NMR spectra of quadrupolar nuclei in polycrystalline
samples. Since quadrupolar couplings are often a significant fraction of the Zeeman coupling, a
complete analysis of such experimental spectra requires a theoretical treatment beyond first-order.
For multiple pulse NMR experiments, which may include sample rotation, the traditional density
matrix approaches for treating higher-order effects suffer from the constraint that undesired fast
oscillations i.e., multiples of the Zeeman frequency , which arise from allowed overtone transitions,
can only be eliminated in numerical simulations by employing sampling rates greater than 2I times
the Zeeman frequency. Here, we present a general theoretical approach for arbitrary spin I that
implements an analytical “filtering” of undesired fast oscillations in the rotating tilted frame, while
still performing an exact diagonalization. Alternatively, this approach can be applied using a
perturbation expansion for the eigenvalues and eigenstates, such that arbitrary levels of theory can
be explored. The only constraint in this approach is that the Zeeman interaction remains the
dominant interaction. Using this theoretical framework, numerical simulations can be implemented
without the need for a high sampling rate of observables and with significantly reduced computation
times. Additionally, this approach provides a general procedure for focusing on the excitation and
detection of both fundamental and overtone transitions. Using this approach we explore higher-order
effects on a number of sensitivity and resolution issues with NMR of quadrupolar nuclei. © 2008
American Institute of Physics. DOI: 10.1063/1.2833580

I. INTRODUCTION

Numerous developments in recent years for improving
the resolution and sensitivity of quadrupolar nuclei have
transformed many nuclear magnetic resonance NMR active
nuclei from esoteric into routine probes of structure in solids.
Earlier difficulties stemmed from the large quadrupolar inter-
actions, which are often many orders of magnitude stronger
than other internal spin interactions e.g., chemical shift,
J-couplings, dipolar couplings, etc. , and sometimes even
stronger than the Zeeman interaction. The key to designing
methods for improving resolution, such as double rotation
DOR ,1,2 two-dimensional 2D dynamic-angle spinning
DAS ,2,3 2D multiple-quantum magic-angle spinning
MQ-MAS ,4,5 and 2D satellite transition magic-angle spin-

ning ST-MAS ,6 was a careful analysis of the perturbation
expansion to second-order for the NMR transition frequency.
With the enormous success of these methods and related the-
oretical analyses there has been an explosion of solid-state
NMR studies using quadrupolar nuclei in a variety of mate-
rials. Over the years, a few researchers have found subtle,
and sometimes not so subtle,7–9 effects in NMR spectra of
quadrupolar nuclei that require theoretical analysis beyond
the second-order perturbation theory. Understanding how
these higher-order effects manifest themselves in solid-state
NMR spectra is becoming increasingly important as re-
searchers push the limits of resolution and sensitivity of qua-
drupolar nuclei to measure and exploit J-couplings10,11 and

second-order dipolar-quadrupolar12,13 and chemical shift
anisotropy-quadrupolar14 cross terms in the spectra of
samples containing quadrupolar nuclei. Compared to the
symmetric multiple quantum and central transitions, higher-
order effects are particularly prevalent in the nonsymmetric
satellite transitions of quadrupolar nuclei.8,14,15 With the in-

creased use of ST-MAS, as well as recent success with indi-
rect detection of 14N magic-angle spinning in solids,16–19 a
general theoretical approach is clearly needed for a more
complete analysis of experimental NMR spectra involving
quadrupolar nuclei.

Generally, there can be up to I 2I+1 allowed transitions
for a single spin I, and, if one coupling dominates, the high-
est transition frequencies could be as large as 2I times that
coupling. In the limit where the Zeeman coupling is infi-
nitely larger than all other couplings, there will be only 2I
allowed transitions, all having frequencies near the Larmor
frequency 0. In this case, a transformation of the density
operator into a frame rotating at a frequency near 0 leaves
only the slower oscillations from the remaining “truncated”
couplings. In contrast, when the Zeeman coupling is finite
compared to the remaining couplings, then one has to allow
for all transitions. If the Zeeman coupling remains the
largest, then it still can be sensible to employ a rotating
frame transformation, however, this transformation no longer
guarantees that all fast oscillations are eliminated and only
slow oscillations remain in the rotating frame density opera-
tor. Thus, to prevent undesired fast oscillations from aliasinga URL: http://www.grandinetti.org.
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when calculating observables in the rotating frame one is
forced to use a sample rate that exceeds the highest allowed
transition frequencies.20

Here, we expand on an idea, first described by Goldman
et al.,20 where the the Hamiltonian and observable operators
are expanded in terms of irreducible spherical tensor opera-
tors and "mI !or the harmonics of the fundamental Zeeman
frequency". This approach can be employed, as shown by
Goldman et al.,20 using either static perturbation theory or, as
shown here, using exact numerical diagonalization. This ex-
pansion is a natural choice for the NMR experiment where
the tuned circuit of the NMR probe excites and detects in a
band of frequencies associated with some definite "mI value.
When implemented numerically this approach eliminates the
need for high sampling rates and significantly decreases
computation times. Additionally, this approach provides a
general procedure for focusing on the excitation and detec-
tion of both fundamental, i.e., “Zeeman allowed” and over-
tone transitions.21

In the next section we outline our theoretical approach
for treating excitation, detection, and sample rotation when
the Zeeman eigenstates are not the system eigenstates. In a
later section we present two illustrative examples when such
a theoretical approach is necessary. These are !1" 14N over-
tone NMR, where sensitivity issues associated with excita-
tion bandwidth, detection, and sample rotation are more fully
explored, and !2" third-order effects on nonsymmetric tran-
sitions, exploring examples of MAS, DOR, and ST-MAS
spectra of half-integer and rotor synchronous acquisition
MAS spectra of integer spin quadrupolar nuclei.

II. THEORY

To begin our treatment we define the laboratory frame by
orienting the direction of the z axis along the static external
magnetic field. We also define x-z plane to contain the axis of
the excitation coil, where the excitation Hamiltonian in the
laboratory frame is given by

Hrf!t"/# = − 2$B1 cos!%!SF%t + %rf"!IX sin &rf + IZ cos &rf" . !1"

Here $ is the gyromagnetic ratio of the nucleus being ex-
cited, B1 is the excitation magnetic field strength, %!SF% is the
excitation frequency !i.e., spectrometer transmitter fre-
quency", %rf is the initial phase of the excitation, and &rf is
the angle between the z-axis and the axis of the excitation
coil. Likewise, the rf receiver coil is defined to have its axis
in the x-z plane, and the signal detected by the receiver coil
is given by

Scoil!t" =
d

dt
Tr&'!t"IX'sin &R +

d

dt
Tr&'!t"IZ'cos &R, !2"

where &R is the angle between the z-axis and the axis of the
receiver coil.

In the absence of excitation the spins evolve under the
stationary state Hamiltonian HS, whose representation in its
diagonal frame DS is related to the laboratory frame repre-
sentation by

DS = V†HSV , !3"

where V is a unitary transformation between the diagonal
and laboratory frames. We will first consider a Hamiltonian
whose diagonalization transformation, i.e., V, is time inde-
pendent. Later, we will consider the need for a time depen-
dent diagonalization in the context of rotating samples and
treat this problem using the adiabatic approximation.

If the Zeeman interaction is the dominant interaction in
HS,

HS = #!0IZ + HS
!1", !4"

where !0=−$B0 and HS
!1" is the part of the stationary state

Hamiltonian arising from spin couplings internal to the
sample, then our treatment can be further simplified by mov-
ing into the “rotating tilted” frame,20 a frame rotating about
the z-axis of the diagonal frame, and defined by the follow-
ing transformation:

W!t" = Ve−i!!rott+(rot"IZ
!

, !5"

where !rot is the rotating frame frequency and (rot is the
initial phase of the rotating frame. All operators in this frame
will carry a circle superscript. The orientation of the rotating
tilted frame with respect to the laboratory frame will depend
on crystallite orientation. The propagator in this frame is
given by

U!!t,0" = Te−!i/#"(0
t #W†!s"HSW!s"+i#Ẇ†!s"W!s"$ds, !6"

where T is the time ordering operator, W†!t"HSW!t" is the
diagonalized laboratory frame stationary state Hamiltonian,
and i#Ẇ†!t"W!t" is the familiar quantum analogue of the
inertial forces generated classically by transforming to a
moving frame. This propagator can be related back to the lab
frame according to

U!t,0" = W!t"U!!t,0"W†!0" . !7"

The density operator in the rotating tilted frame '!!t" is re-
lated to the laboratory frame density operator by

'!!t" = W!t"†'!t"W!t" . !8"

We follow the NMR experiment !i.e., define our coherences"
in the rotating tilted frame.22 Additionally, we take the equi-
librium density operator in the high temperature approxima-
tion to be proportional to the stationary state Hamiltonian,
that is,

'eq
! ) DS. !9"

In the treatment that follows we assume the Zeeman in-
teraction is the dominant interaction in HS, and with the
proper choice of !rot obtain a time independent “rotating
tilted frame” Hamiltonian H! in the form of

H! = W!t"†HSW!t" − #!rotIZ
! + H°rf!n" , !10"

where Hrf
! !n" is the effective rf Hamiltonian that excites the

nth harmonic, that is, n=1 for the fundamental, n=2 for the
first overtone, and so on. In this derivation we will also de-
fine "!=!0−!rot, and assume that !rot is chosen so that
%"!%* %!0%. Additionally, we adopt and modify the conven-
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tion of Levitt,23 and, depending on the sign of the gyromag-
netic ratio and the harmonic to be excited or detected, further
define

(rot = )0 when $ + 0,

,/n when $ - 0.
* !11"

To include rf excitation we assume that the magnitude of
the excitation Hamiltonian is small compared to the station-
ary state Hamiltonian, i.e., +HS+. +Hrf!t"+ at all times. In this
case the static diagonalization of HS is used to transform the
operators in the excitation Hamiltonian in Eq. !1" into the
rotating tilted frame. The same approach will be applied to
Eq. !2", our expression for the signal. Thus, to begin the
derivation we transform the operators that appear in Eqs. !1"
and !2" into the rotating tilted frame,

W†!t"IXW!t" = ,
l,m

Xl,mT l,m
! e−im!!rott+(rot", !12"

and

W†!t"IZW!t" = ,
l,m

Zl,mT l,m
! e−im!!rott+(rot", !13"

where

Xl,m = Tr!V†IXVT l,m
† " ,

!14"
Zl,m = Tr!V†IZVT l,m

† " .

For a spin I the integer values of l will run from 0 to 2I, and
m will cover integer values from −l to l. Here, the Tl,m are the
unit irreducible tensor operators, which satisfy the following
trace relation:

Tr&Tl,mT l!,m!
† ' = /l,l!/m,m!. !15"

It is important not to confuse these operators with the non-
unit irreducible tensor operators, which are more commonly
used in theoretical descriptions of NMR Hamiltonians. The
relationship between the unit Tl,m and nonunit Tl,m tensor
operators is given by24

Tl,m =
1
l!
- !2l + 1"!2I − l"!2l!2l"!

!!2I + l + 1""! .1/2
Tl,m. !16"

Equations !12"–!14" are key to developing our theoretical
approach, and facilitate the analytical filtering needed in this
problem.22 In the sections that follow we will find it conve-
nient to define

Cl,m = Xl,m sin &R + Zl,m cos &R. !17"

Using the static perturbation approach as outlined by
Goldman et al.,20 V can written in terms of a series expan-
sion,

V = 1 + V!1" + V!2" + ¯ , !18"

with each correction expanded in terms of irreducible tensor
operators. These expressions can then be substituted into Eq.
!14" to obtain a perturbation expansion for Cl,m !see Appen-
dix B". Alternatively, one can employ numerical methods,
where V !and D" are calculated exactly and used in Eq. !14"
to obtain an exact evaluation for Cl,m. In a numerical ap-

proach the returned eigenstates will likely be in the following
form:

V! = Ve−i!, !19"

where #! ,D$=0. Thus, it is necessary to adjust the phase of
each eigenvector column so the diagonal elements of V are
real, as they are in Eq. !18". That is, the arbitrary phases from
! are simply removed. This ensures a proper evaluation of
Xl,m in Eq. !14".

A. Detection

Using Eqs. !12" and !13" with the detected signal given
from Eq. !2" we find

Scoil!t" = ,
l,m

d

dt
Cl,mTr&'!!t"T l,m

! 'e−im!!rott+(rot". !20"

Although intriguing, we will not consider further the weaker
signal arising from the derivative of slow !*!rot" time de-
pendence inside the Tr&'!!t"T l,m

! ' term in addition to the m
=0 term. Since NMR probe bandwidths rarely extend over
integer multiples of !rot, we select only signal from specific
0m values, that is, from the harmonic n= %m%. Under these
conditions, we can expand Eq. !20" in terms of specific har-
monic values, again adopting the modified phase convention
of Levitt, to obtain

Scoil!t" = − in!rot
$

%$%,l=n

2I

#1l,−n!t"ein!rott − 1l,n!t"e−in!rott$ ,

!21"

where

1l,n!t" = Cl,n Tr&'!!t"T l,n
! ' . !22"

Within the NMR spectrometer this signal is mixed down
with a receiver reference oscillation %!SF% to lower frequen-
cies where it can be more easily recorded. Mathematically,
this mixing process is simulated by multiplying the signal
detected in the receiver coil by 2 cos!%!SF%t+%ref", to obtain

Scos!t" = 2 cos!%!SF%t + %ref"Scoil!t" , !23"

and by 2 sin!%!SF%t+%ref" to obtain

Ssin!t" = 2 sin!%!SF%t + %ref"Scoil!t" . !24"

We define the phase of the reference as %ref=−!$ / %$%"(R.
Depending on the receiver frequency %!SF% and the sign of
the gyromagnetic ratio we eliminate all terms that contain
frequencies that are outside the detection bandwidth of the
NMR probe. This is a good approximation, since NMR
probe bandwidths are typically too small to detect over a
range that is integer mulitples of !0. Thus, we neglect the
fast n!rot+ %!SF% oscillations for positive Larmor frequencies,
i.e., $+0, or the fast n!rot− %!SF% oscillations for negative
Larmor frequencies, i.e., $-0. In the experiment we will set
the receiver frequency to match selected integer multiples of
the rotating frame frequency so that
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n!rot +
$

%$%
%!SF% = )n!rot − %!SF% = 0 when $ + 0,

n!rot + %!SF% = 0 when $ - 0.
*

!25"

From this we obtain !rot=−!$ / %$%"%!SF% /n and simplify our
two signal expressions to

Scos!n,t" = i%!SF%,
l=n

2I

#1l,−n!t"e−i(R − 1l,n!t"ei(R$ , !26"

and

Ssin!n,t" =
$

%$%
%!SF%,

l=n

2I

#1l,−n!t"e−i(R + 1l,n!t"ei(R$ . !27"

Depending on the sign of the gyromagnetic ratio we
combine these two real signals in the spectrometer into a
complex signal given by

S!n,t" = Scos!n,t" − i!$/%$%"Ssin!n,t" , !28"

which leads to our final expression for the NMR signal as
follows:

S!n - 0,t" = − i2%!SF%,
l=n

2I

Cl,n Tr&'!!t"T l,n
! 'ei(R. !29"

This expression highlights a number of important features of
the signal when strong quadrupolar couplings are present.
First, we examine a zeroth-order approximation for the
eigenstates where one finds !see Appendix B" that C1,1, given
by

C1,1 = −
1
/2

f I
!0" sin &R, !30"

where

f I
!0" = - I!I + 1"!2I + 1"

3
.1/2

, !31"

is the only nonzero coefficient. As expected, the resulting
fundamental signal,

S!n = 1,t" = i%!SF%/2f I
!0" Tr&'!!t"T 1,1

! 'ei(R sin &R, !32"

varies in strength as the sine of the angle between the axis of
the coil and B0, becoming unobservable when the coil is
parallel to B0. Additionally, combining the use of a Faraday
detection scheme, which is linearly dependent on detection
frequency, with an equilibrium magnetization, which is lin-
early dependent on !0 in the high temperature approxima-
tion, we also find the expected behavior that the overall fun-
damental signal strength increases with !0

2.25

With a first-order correction to the eigenstates the direct
detection of the first overtone !n=2" signal becomes pos-
sible. In the case of a strong quadrupolar coupling, where we
write the full quadrupolar Hamiltonian40 in the laboratory
frame as

Hq = #!q ,
k=−2

2

!− 1"kA2,kT2,−k, !33"

with the quadrupolar splitting given by

!q = 6,Cq/2I!2I − 1" , !34"

with Cq as the quadrupolar coupling constant, the n=2 over-
tone signal expression using a first-order eigenstate expan-
sion of the Cl,n for a spin I=1 nucleus gives

S!n = 2,t" = − i2%!SF%
!q

!0
f I

!0"f I
!1" Tr&'!!t"T 2,2

! '

2 #A2,−2!3q"cos &R − A2,−1!3q"sin &R$ei(R, !35"

where

f I
!1" =

1
/120

- !2I + 3"!
!2I − 2"!.1/2

. !36"

Here, we see the well known result that overtone signals can
be detected at nearly equal strength with the axis of the coil
at any angle with respect to B0, including parallel. Notice
that the inverse dependence on the static field strength can-
cels part of the sensitivity advantages of high frequency de-
tection, that is, !0 cancels %!SF% and one finds that the first
overtone signal strength only increases linearly with !0. This
effect was predicted by Tycko and Opella.21 With each suc-
cessive higher-order eigenstate correction, the next higher
harmonic signal becomes allowed, up to the maximum al-
lowed harmonic of n=2I. Using this approach, one can
readily show that the nth harmonic signal strength will vary
according to !0

2!!q /!0"n−1. Interestingly, with higher-order
eigenstate corrections the fundamental !n=1" signal also
contains “Zeeman” forbidden contributions from the l-1
terms. These contributions, however, are scaled by the Cl,n,
whose magnitude decreases as !!q /!0"l−1. Normally, such
signal contributions are not detected as the contribution from
the lowest value of l will always dominant.

For overtone signals, there is a strong crystallite orienta-
tion dependence inside the Cl,n term. This complex scaling
will lead to each crystallite having its own unique signal
phase and amplitude. From this one might conclude that
there would be no observable coherence, since the net signal
from all the crystallites with such a distribution of effective
receiver phases would be zero. However, as explained by
Marinelli et al.,26 an identical crystallite dependent phase
shift is present in the phase of the excitation pulse. Thus, the
magnetization vectors after a pulse are distributed in such a
way that the signal from these “dephased” magnetization
vectors are reassembled into a coherent signal. If, however,
the crystallite orientation changes between excitation and de-
tection, as would occur with sample rotation, then a complex
spinning sideband pattern and a dramatic loss of signal
occurs.26 This behavior is illustrated in Sec. IV.

B. Excitation

Inserting Eqs. !12" and !13" into the excitation Hamil-
tonian and again using the modified Levitt convention to
obtain an excitation Hamiltonian that is independent of the
sign of the gyromagnetic ratio, we define !1= %$B1% and %rf
=−!$ / %$%"( to obtain

052318-4 N. M. Trease and P. J. Grandinetti J. Chem. Phys. 128, 052318 "2008!

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Hrf
! !t"/# = 2!1 cos0%!SF%t −

$

%$%
(1,

l,m
Cl,mT l,m

! e−im!rott.

!37"

Neglecting the possibility of excitation through the m=0
term, and expanding in terms of transition harmonic values,
n, we obtain

Hrf
! !t"/#!1 = ,

l,n-0
Cl,nT l,n

! #e−i!n!rot−%!SF%"te−i!$/%$%"(

+ e−i!n!rot+%!SF%"tei!$/%$%"($

+ ,
l,n-0

Cl,−nT l,−n
! #ei!n!rot−%!SF%"tei!$/%$%"(

+ ei!n!rot+%!SF%"te−i!$/%$%"($ . !38"

Depending on the transmitter frequency %!SF% and the sign of
the gyromagnetic ratio we eliminate all terms in the above
expression that contain frequencies that are outside the exci-
tation bandwidth of the NMR probe. Again, this is a good
approximation, since NMR probe bandwidths are typically
too small to excite over a range that spans integer mulitples
of !0. Thus, we neglect the fast n!rot+ %!SF% oscillations for a
positive Larmor frequencies, i.e., $+0, or the fast n!rot
− %!SF% oscillations for a negative Larmor frequencies, i.e.,
$-0. As before, we will not consider here excitation asso-
ciated with n=0, that is, dc pulses. We set the transmitter
frequency to match selected integer multiple of the rotating
frame frequency according to Eq. !25", again implying a ro-
tating frame frequency given by !rot=−!$ / %$%"%!SF% /n. Un-
der these conditions we obtain the excitation Hamiltonian

Hrf
! !n - 0" = #!1,

l=n

2I

#Cl,nT l,n
! ei( + Cl,−nT l,−n

! e−i($ . !39"

As with the signal, we can apply a zeroth-order approxima-
tion for the eigenstates, and find the fundamental rf excita-
tion Hamiltonian,

Hrf
! !n = 1" = − #!1

f I
!0"

/2
#T 1,1

! ei( − T 1,−1
! e−i($sin &rf. !40"

Again, note that the fundamental rf excitation strength varies
as the sine of angle between the axis of the coil and B0, with
no excitation possible when the coil is parallel to B0. With a
first-order correction to the eigenstates the direct excitation
of the first overtone, i.e., n=2, signal becomes possible. In
the case of a strong quadrupolar coupling in a spin I=1
nucleus, the n=2 overtone excitation is given by

Hrf
! !n = 2" =

#!1!q

!0
f I

!0"f I
!1"#T 2,2

! #A2,−2!3q"cos &rf

− A2,−1!3q"sin &rf$ei( + T 2,−2
! #A2,2!3q"cos &rf

+ A2,1!3q"sin &rf$e−i($ . !41"

As before, the complex scaling from the Cl,n coefficients lead
to each crystallite having its own unique transmitter phase
and strength during overtone excitation. It is the matching of
this phase to the “effective” overtone receiver phase of each
crystallite that leads to a net observable overtone signal in

polycrystalline samples. Additionally, with each successive
higher-order eigenstate correction, the excitation of higher
overtone signals become possible, with n values up to 2I.
Again, note that with higher-order eigenstate corrections it
becomes possible to excite fundamental !n=1" transitions
through “Zeeman” forbidden contributions in the l-1 terms.
Finally, we point out that while most phase cycling relation-
ships for coherence transfer pathways will be unaffected by
higher-order effects, there are some situations that may re-
quire a modified approach, particularly, for coherence trans-
fer between excitations associated with different harmonics n
values.22

1. Off-resonant excitation

In our treatment above, we have chosen to use a com-
mon rotating frame where both excitation and detection oc-
curs. This is somewhat restrictive, since it is often necessary
to apply excitation pulses at multiple frequencies during an
experiment. It is still useful to define a common rotating
frame particularly, since signals are often detected inside the
common rotating frame. Thus, when treating off-resonant ex-
citation, we will define offset rotating frames with respect to
our common rotating frame. When applying excitation at a
frequency offset "! from %!SF%, one transforms into an offset
rotating frame, given by

!rot! = −
$

%$%
%!SF + "!%/n . !42"

In this frame the Hamiltonian of Eq. !39" is used to construct
the offset rotating frame Hamiltonian, given by

H!! = W!t"†HSW!t" − #!rot! IZ
! + Hrf

! !n" . !43"

This Hamiltonian can then be used to construct the propaga-
tor in the common rotating frame according to

U!!tb,ta" = e−i"!rottbIZ
!

e−!i/#"H!!!tb−ta"ei"!rottaIZ
!

, !44"

where "!rot=!rot! −!rot.

C. Rotating samples

Through sample motion the orientation of the principal
axis system for the internal spin interactions with respect to
the laboratory frame becomes time dependent. For systems
with second- and higher-order effects this introduces a com-
plication that the direction of the eigenstates in the laboratory
frame is time dependent. Fortunately, this situation can be
simplified in solid-state NMR since the time dependence
from sample motion is slow enough that we can make the
adiabatic approximation. In making this approximation,
however, care must be taken to properly correct for any
quantum mechanical anholonomy. That is, time-dependent
eigenstates do not return to their original values after com-
pleting a cyclic evolution period, but rather acquire an addi-
tional phase modulation that depends on the geometry of the
path traversed by the eigenstates during sample motion.

To treat this situation we will transform into a rotating
frame about the z-axis of the diagonal frame !i.e., the rotating
tilted frame", using
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W!t" = V!t"e−i4!t"Z!t" , !45"

where

Z!t" = e−i!!rott+(rot"IZ
!

, !46"

and 4!t" will be defined below. We write the propagator as

U!t" = W!t"Te−!i/#"(0
t #D!s"+i#Ẇ†!s"W!s"$dsW†!0" , !47"

where

iẆ†!t"W!t" = Z†!t"#ei4!t"V̇†!t"V!t"e−i4!t" − 4̇!t"$Z!t"

− !rotIZ
! .

We make the adiabatic approximation by neglecting all the
parts of iV̇†!t"V!t" that do not commute with D!t". Further-
more, one can show that enforcing parallel transport of the
time dependent eigenstates %n!t"2, using the constraint

3n!t"%ṅ!t"2 = 0, !48"

leads to

3n!t"%ei4!t"iV̇†!t"V!t"e−i4!t" − 4̇!t"%n!t"2 = 0. !49"

Thus, we enforce parallel transport of the eigenvectors by
defining

4̇!t" = i,
n

%ṅ!t"23n!t"% = i#V̇†!t"V!t"$diag. !50"

In the adiabatic limit the propagator in the rotating tilted
frame becomes

U!!t,0" = e−i(0
t "̇!s"dse−!i/#"(0

t #D!s"−#!rotIZ
! $ds. !51"

In the case of a strong quadrupolar coupling, one can show,20

using a first-order correction to the eigenstates, that "̇!t" is
given by

"̇!1"!t" = −
i

2
0!Q

!Z
12

,
m#0

Ȧ2m!t"A2−m!t"#T2−m,T2m$
m2 . !52"

Since the magnitude of the excitation Hamiltonian is
small compared to D!t", it can be added without affecting the
time dependent tilting of V!t". Thus, with the proper choice
of !rot, we obtain an effective Hamiltonian in the rotating
tilted frame,

H!!t" = D!t" − #!rotIZ
! + "̇!t" + Hrf

! !t,n" , !53"

where the excitation Hamiltonian is given by

Hrf
! !n - 0" = #!1,

l=n

2I

#Cl,n!t"T l,n
! ei( + Cl,−n!t"T l,−n

! e−i($ .

!54"

Equations !12", !13", and !17" can still be used with the time
dependent V!t" to obtain time dependent coefficients Cl,m!t".
The signal is then given by

S!n - 0,t" = − i2%!SF%,
l=n

2I

Cl,n!t" Tr&'!!t"Tl,n
! 'ei(R. !55"

III. NUMERICAL METHODS

To treat a time dependent Hamiltonian in numerical cal-
culations we adopt the conventional approach of dividing
time into small enough dt values that the Hamiltonian can be
approximated as time independent. For the evolution of the
density operator in the laboratory frame we construct the
propagator according to

U!ndt,0" = Un ¯ U1U0, !56"

where

Un = Vne−!i/#"DndtVn
†. !57"

We prefer, however, to evolve the density operator in the
rotating tilted frame where it is easier to separate resonances
according to harmonics. The numerical transformation of the
density operator into the initial tilted frame is

'0
! = W0

†'0W0, !58"

where we define the following transformation:

Wn = VnZn, !59"

and

Zn = e−i!!rotndtIZ
! +(rot". !60"

Similarly, we can relate the laboratory frame propagators Un
to the tilted rotating frame propagators Un

! according to

Combining Eqs. !57" and !59", we write the nth propagator
in the tilted rotating frame as

Un
! = Wn+1

† UnWn = Zn+1
† #Vn+1

† Vn$e−!i/#"DndtZn. !61"

In our numerical approach we apply the adiabatic approxi-
mation by replacing the expression in square brackets with

#Vn+1
† Vn$ → e−i"̇ndt, !62"

where

"̇ndt = i##Vn+1
† − Vn

†$Vn$diag. !63"

One can show, using a series expansion of Eq. !62", that the
adiabatic approximation can be further simplified to

#Vn+1
† Vn$ → #Vn+1

† Vn$diag, !64"

and the nth propagator becomes

Un
° = #Vn+1

† Vn$diage
−!i/#"!Dn−#!rotIZ

! "dt. !65"

All simulations were performed using 6044 crystal ori-
entations from the three angle zcw set.27–30

IV. EXAMPLES

Using the theoretical approach outlined in this paper, we
have performed full density operator numerical simulations
of illustrative examples where higher-order effects are nec-
essary to describe the experiment.
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A. Nitrogen-14 overtone spectroscopy

The direct excitation and detection of overtone !n-1"
transitions in solid-state NMR requires tilting of the eigen-
states away from the Zeeman eigenstates. This possibility
was experimentally demonstrated by Bloom and LeGros31

and Tycko and Opella21,32,33 with the 14N overtone transition.
While this transition is notoriously difficult to excite and

detect it has an advantage over the fundamental transitions of
14N that it does not experience first-order quadrupolar broad-
enings, and contributions from the second-order quadrupolar
broadenings and remaining first-order interactions are typi-
cally on the order of a few kilohertz. Additionally, 14N NMR
does not required isotopic labeling. With the development of
DOR and DAS, it was hoped that the remaining second-
order anisotropy could be eliminated and high-resolution 14N
overtone spectra obtained. Alas, this possibility has proved
elusive. In fact, even magic-angle spinning overtone experi-
ments have been extremely difficult. The difficulty with
sample rotation and overtone NMR was first explained by
Marinelli et al.,26 and we refer the reader there for additional
details. Generally, overtone NMR is best understood by a
close examination of the expressions for the excitation and
signal after substituting the first-order expression for the Cl,n
!see Appendix B" into Eqs. !29" and !39". From Eq. !41" we
see that the effective overtone nutation frequency has a
!1!q /!0 dependence as well as an orientation dependence.
Figure 1 is a simulated comparison of absolute intensity of
14N static overtone signal using the 14N NMR parameters of
N-acetylvaline as a function of pulse length at various static
and rf field strengths. As predicted, the nutation frequency
decreases with increasing static field strength, and there is a
decay of the nutation oscillation due to the orientation de-
pendence. Note that signal strengths at constant rf field
strength increase linearly, as predicted, with increasing static
field strength when using optimized pulse lengths.

Figures 2!a" and 2!b" are a comparison of simulated
static overtone spectra for a 14N site in N-acetylvaline at 4.7,
9.4, 14.1, and 18.8 T at two different radio frequency field
strengths. As noted in earlier studies, 14N overtone reso-
nances are typically on the order of a few kilohertz, since
their linewidths are dominated by second-order anisotropic
broadenings from the quadrupolar interaction. The powder
pattern lineshape, however, differs from the central transition
lineshape of half-integer nuclei mainly from the strong de-
pendence of excitation and detection on crystallite orienta-

FIG. 1. !Color online" Comparison of absolute intensity of simulated 14N
static overtone of N-acetylvaline as a function of pulse length at 4.7, 9.4,
14.1, and 18.8 T with !a" 51=50 kHz and !b" 51=250 kHz. For both exci-
tation and detection the coil was oriented at 90° with respect to B0, that is,
&rf=&R=, /2. Spectra were excited with the strongest singularity on reso-
nance. N-acetylvaline 14N parameters: /csa=106, 6csa=0.27, Cq=3.21 MHz,
and 6q=0.31 with coincident tensor orientations assumed. Calculations were
performed using exact eigenvalues and exact eigenvectors.

FIG. 2. Comparison of simulated 14N
static overtone spectrum of
N-acetylvaline at 4.7, 9.4, 14.1, and
18.8 T with !a" 51=50 kHz and !b"
51=250 kHz. Spectra were excited
with the strongest singularity on reso-
nance, and pulses lengths optimized to
values shown to obtain the maximum
signal for each B0 and B1 field
strength. !c" Offset dependence of 14N
static overtone excitation of
N-acetylvaline at 4.7, 9.4, 14.1, and
18.8 T. Simulations with 51=50 kHz
are shown in gray. For both excitation
and detection the coil was oriented at
90° with respect to B0, that is, &rf
=&R=, /2. Calculations were per-
formed using exact eigenvalues and
exact eigenvectors.
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tion. One of the main experimental obstacles to overtone
NMR, however, is the strong offset excitation dependence
which arises from the orientation dependence and scaling of
the rf field strength by !q /!0. This can be seen in Fig. 2!c".
Only at the lowest static field and highest rf field strengths is
the offset dependence somewhat reasonable. Clearly, it is
difficult to excite and detect overtone resonances unless on-
resonance excitation is applied. This has been a serious limi-
tation of all overtone NMR experiments to date. Lee and
Ramamoorthy34 were able to reduce the offset dependence in
14N overtone NMR somewhat with the use of composite
pulses, however, the effect is rather severe and more signifi-
cant improvements are clearly needed.

If the offset dependence were the only obstacle, overtone
NMR could be developed into a more routine method. Un-
fortunately, when MAS is applied in overtone experiments
the signal is nearly destroyed. This is demonstrated in Fig. 3
for the case of MAS at two different static field strengths. As
noted earlier, as long as the orientation dependent phase of
the rf excitation is identical to the orientation dependent
phase of the detection there is constructive interference of
signals from the different crystallites. With sample rotation,
however, this phase matching is destroyed, and signals ex-
cited with one phase are detected with different phases as the
sample rotates. The result is a significant loss in sensitivity,
as illustrated in Fig. 3 for a polycrystalline sample. Addition-
ally, as described by Marinelli et al.,26 the time-dependent
signal phase modulation due to sample motion splits the sig-
nal into a centerband and four spinning sidebands positioned
at 0 , 03R, and 023R, respectively. With increasing spin-
ning speeds the integrated intensity of the sidebands do not
transfer to the centerband. This splitting occurs in addition to
the normal spinning sidebands generated by rotational ech-
oes of refocused frequency anisotropies.

Since the development of techniques for removing
second-order anisotropies there has been excitement about
the possibility of obtaining high resolution spectra from the
14N overtone NMR transition, particularly, for the case of
biomolecules. With the theoretical framework developed
here we can properly investigate this possibility. Figure 4 is
the simulated 14N overtone double rotation spectra of
N-acetylvaline at various spinning speeds and different static
field strengths. As hoped, overtone DOR does eliminate

second-order anisotropies. Unfortunately, overtone DOR suf-
fers from the same limitations of MAS, that is, destructive
interference of signals from the different crystallites occurs
as the sample rotates, and the signal is split into many side-
bands whose intensity do not transfer to the centerband with
increased spinning speeds.

B. Nonsymmetric transitions

The symmetric !m→−m" transition of a quadrupolar
nucleus is unaffected by the quadrupolar interaction to first-
order in a perturbation expansion of the transition frequency.
In fact, the symmetric transitions are also unaffected by the
quadrupolar interaction to third-order in the perturbation ex-
pansion of their transition frequencies.35 For this reason the
central !1 /2→−1 /2" transition is the most easily excited and
detected transition in solid-state NMR of half-integer qua-
drupolar nuclei in polycrystalline samples. In contrast, the

FIG. 3. Comparison of simulated 14N
static overtone magic-angle spinning
spectra of N-acetylvaline at !a" 4.7 T
and !b" 18.8 T with 51=50 kHz. Spec-
tra were excited with the strongest sin-
gularity on resonance, and pulse
lengths of !a" 20 7s and !b" 100 7s,
optimized on the static sample, was
used in simulations. For both excita-
tion and detection the coil was ori-
ented at the magic-angle, that is, &rf
=&R=54.74°. Calculations were per-
formed using exact eigenvalues and
eigenvectors. The intensity of the
spectra in !a" were scaled by a factor
of 4 compared to those in !b".

FIG. 4. Comparison of simulated 14N overtone double rotation spectra of
N-acetylvaline at 18.8 T with 51=50 kHz. Inner/outer rotor spinning speeds
are as indicated. Spectra were excited with the strongest singularity on reso-
nance, and a pulse length of 100 7s, optimized on the static sample, was
used in all simulations. For both excitation and detection the coil was ori-
ented at the magic-angle, that is, &rf=&R=54.74°. Calculations were per-
formed using exact eigenvalues and eigenvectors.
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nonsymmetric transitions are affected by the quadrupolar in-
teraction at all orders in the perturbation expansion of their
transitions frequencies. Thus, in polycrystalline solids, the
anisotropic linewidth of the satellite transitions are typically
orders of magnitude larger than the symmetric transitions.
Nonetheless, there are a number of advantages to exciting
and detecting the nonsymmetric satellite transitions36 for
probing the structure as well as the dynamics37 in materials.
This has been particularly true after the introduction of the
ST-MAS experiment,6,38 which provides a high resolution
spectrum through a two-dimensional correlation between the
satellite and central transition. In the case of 27Al NMR in
Andalusite, however, the ST-MAS experiment is unable to
produce an isotropic spectrum of the site with the largest
quadrupolar couplings8 at a magnetic field strength of
11.7 T. Using static perturbation theory, Gan et al.8 obtained
analytical expressions for the third-order energy eigenvalues
and numerically simulated the ST-MAS spectrum. They
found that the anisotropy arising from the third-order term is
sizable, and destroys the mirror image symmetry needed be-
tween the central and the satellite transitions to refocus com-
pletely the anisotropy, which in turn spoils the ability of the
ST-MAS experiment to provide a high-resolution isotropic
dimension. Using our theoretical approach we have numeri-
cally simulated ST-MAS spectra !shown in Fig. 5", using the
NMR parameters of the large Cq site in Andalusite. In the left
column are ST-MAS spectra simulated using second-order
eigenvalues with zeroth-order eigenstates. In the right col-
umn are ST-MAS spectra simulated using exact eigenvalues
with zeroth-order eigenstates. This figure reproduces the re-
sult of Gan et al.8 and additionally highlights the differences
between the observed !exact" spectra and the spectra pre-
dicted using only second-order perturbation theory. At the
top in both columns are the simulated ST-MAS spectra spin-
ning at the magic-angle. Clearly, the third- and higher-order
effects are responsible for the loss of the high resolution
correlation. Moving down from the top in both columns are
ST-MAS spectra obtained at angles slightly away from the
magic angle. The ST-MAS experiment is notoriously sensi-
tive to mis-set of the magic-angle, and these spectra show
how the residual 2D lineshape arising from the third-order
term could easily be misinterpreted as an angle mis-set,
rather than a third-order effect.

To better understand this effect, we have simulated the
static, MAS, DOR, and triple rotation !TIR" spectra of 27Al
NMR in Andalusite. While third-order effects are difficult to
discern in the static and MAS spectra, they are clearly re-
vealed in the DOR spectrum, where they give rise to an
anisotropic broadening and different isotropic shifts for each
satellite transition. The residual third-order anisotropy in
DOR is expected to be a sixth rank tensor, which, in prin-
ciple, can be eliminated by adding a third rotation about an
angle of 21.18°, that is, the root of P6!cos 83", where 83 is
the third rotation angle. While not experimentally possible,
we tested this hypothesis by simulating the triple rotation
spectrum also shown in Fig. 6, and, as predicted, the residual
anisotropy in the DOR spectra is eliminated, and an isotropic
spectrum was obtained.

Finally, we note that for nuclei experiencing the same

electric field gradient the size of the quadrupolar coupling
Hamiltonian increases in magnitude with the nuclear quad-
rupole moment, which, in turn, decreases with increasing
spin I #see Eq. !34"$. This makes spin I=1 nuclei the most
susceptible to higher-order quadrupolar effects in NMR. Re-
cent experiments by Gan16 and Bodenhausen and
co-workers17–19 have demonstrated, with accurate magic-
angle adjustment,39 that it is feasible to obtain single 14N
MAS spectra in solids using indirect detection of the 14N
signal via a directly attached spin 1 /2 nucleus, such as 13C
!Refs. 16–18" or 1H.19 In such experiments, our simulations
!shown in Fig. 7", indicate that quite noticeable third-order
effects will be present for 14N nuclei having moderate values
of Cq, even at field strengths as high as 18.8 T. Comparing
the spectra calculated with second-order eigenvalues to those
with exact eigenvalues one sees that the third-order correc-
tion causes a lifting of the degeneracy for the m=−1→0 and
m=0→1 transition under MAS. The overlapping powder

FIG. 5. !Color" Comparison of 2D ST-MAS spectra at various angles away
from the magic-angle and at different levels of theory. In the left column are
ST-MAS spectra simulated using second-order eigenvalues with zeroth-
order eigenstates. In the right column are ST-MAS spectra simulated using
exact eigenvalues with zeroth-order eigenstates. At the top in both columns
are the simulated ST-MAS spectra spinning at magic-angle. Moving down
from the top in both columns are ST-MAS spectra obtained at angles slightly
away from the magic angle. NMR parameters for Andalusite used in the
simulation were Cq=15.3 MHz and 6q=0.13.
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patterns for these two transitions will lead to a more complex
lineshape than what is predicted from second-order perturba-
tion only, and could be misinterpreted as multiple sites where
there is only one. Clearly, such higher-order effects will need
to be taken into account for any detailed analysis of such
spectra.

V. SUMMARY

We have described a general theoretical approach for
including higher-order effects in a full density matrix treat-
ment of a multiple-pulse, sample rotation experiment on a
arbitrary nucleus of spin I. This approach first requires iden-
tifying the frame where the stationary state Hamiltonian is
diagonal. The orientation of this frame with respect to the
laboratory frame will depend on the individual crystallite
orientation. After transforming the excitation and observable
operators from the laboratory into diagonal frame we per-
form a generic expansion of these “tilted” operators using
unit irreducible tensor operators. When taken into the “rotat-
ing tilted” frame, which rotates about the z-axis of the diag-
onal frame, the irreducible tensor operator expansion is de-
composed in terms of harmonics of the fundamental Zeeman

frequency. This decomposition facilitates an analytical filter-
ing of the observable and the excitation Hamiltonian to ob-
tain versions which focus on a specific band of transitions.
We also include a treatment of higher-order effects during
sample rotation, employing the adiabatic approximation and
taking care to correct for quantum mechanical anholonomy
that can arise with time-dependent eigenstates.

Using the examples of overtone NMR and nonsymmet-
ric transitions of quadrupolar nuclei, we apply a numerical
implementation of this theoretical approach. Simulations of
14N overtone NMR reveal an excitation offset dependence
that is quite severe at external static field strengths B0 and
low rf excitation field strengths B1. Additionally, sample ro-
tation was shown to have a devastating effect on overtone
sensitivity. This effect arises from a mismatch between a
crystallite orientation dependent effective phase of the re-
ceiver coil and a crystallite orientation dependent effective
phase of the rf excitation in the overtone experiment.26 Even
though DOR has the ability to eliminate frequency anisotro-
pies in 14N overtone NMR, the mismatch of effective phases
during sample rotation leads to such a dramatic signal loss
that its usefulness is questionable. Finally, we show that re-

FIG. 6. Comparison of static, magic-angle spinning, double rotation, and triple rotation simulated spectra of 27Al NMR in Andalusite at 11.7 Tesla with
Cq=15.3 MHz and 6q=0.13. In !b" the MAS spinning speed was 100 kHz. In !c" the DOR outer rotor angle and speed were 54.74° and 100 kHz, respectively,
and the inner rotor angle and speed was 30.56° and 500 kHz. In !d" the triple rotation !TIR" outer rotor angle and speed were 54.74° and 100 kHz,
respectively, the middle rotor angle and speed were 30.56° and 700 kHz, respectively and the innermost rotor angle and speed were 21.18° and 4900 kHz,
respectively. Calculations were performed using exact eigenvalues and zeroth-order eigenvectors.
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cent observations of third-order effects in solid-state NMR
spectra are well described by this approach, and with this
improved understanding solid-state NMR spectra can now be
properly interpreted for sample characterization.

ACKNOWLEDGMENTS

One of the authors !P.J.G." acknowledges Alex Pines for
helpful discussions on the adiabatic approximation and Zhe-
hong Gan and Geoffrey Bodenhausen for helpful discussions
on indirect detection of 14N MAS NMR. This material is
based upon work supported in part by the National Science
Foundation under Grant No. CHE-0616881 and Le Studium,
Orlèans, France. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
author!s" and do not necessarily reflect the views of the Na-
tional Science Foundation !NSF".

APPENDIX A: TRANSFORMING IX AND IZ INTO THE
DIAGONAL FRAME

To improve the efficiency of numerical simulations we
take advantage of selection rules to eliminate summations
over matrix elements that are zero. Starting with

Zl,m = !− 1"mTr!V†IZVTl,−m"

= !− 1"m ,
r,s,t,u

3s%V†%r23r%IZ%u23u%V%t23t%Tl,−m%s2 , !A1"

we can apply the general selection rule for irreducible ten-
sors,

3t%Tl,−m%s2 = /t,s−m3s − m%Tl,−m%s2 , !A2"

to restrict the sum over t to the cases where t=s−m. These
rules applied to 3r%IZ%u2 further restricts the sum of u to the

cases where u=r. Combining these with 3s%V†%r2= 3r%V%s2*

leaves

Zl,m = !− 1"m,
r,s

3r%V%s2*3r%IZ%r23r%V%s − m23s − m%Tl,−m%s2 .

!A3"

Using similar arguments one also obtains

Xl,m =
!− 1"m

2 ,
r,s

#3r%V%s2*3r%I+%r − 123r − 1%V%s − m23s

− m%Tl,−m%s2 + 3r%V%s2*3r%I−%r + 123r + 1%V%s − m23s

− m%Tl,−m%s2$ . !A4"

APPENDIX B: Xl,m AND Zl,m PERTURBATION
EXPANSIONS

The Xl,m and Zl,m can be expanded in the following per-
turbation series:

Xl,m = Xl,m
!0" + Xl,m

!1" + ¯ , !B1"

Zl,m = Zl,m
!0" + Zl,m

!1" + ¯ . !B2"

and each term was obtained from the perturbation expansion
of V. In a static perturbation analysis to zeroth-order for
eigenvectors we have V=1, and one finds that all Xl,m

!0" and
Zl,m

!0" are zero except

X1,m
!0" = −

mfI
!0"

/2
and Z1,0

!0" = f I
!0". !B3"

Considering the quadrupolar interaction as perturbation
to the Zeeman interaction, the first order correction to V is

FIG. 7. !Color" Comparison of rotor synchronous 14N MAS single quantum spectra using !a" second-order eigenvalues and !b" exact eigenvalues at 9.4 T and
!c" second-order eigenvalues and !d" exact eigenvalues at 18.8 Tesla. For all simulations Cq=3 MHz was used. The 6q values are indicated above. Additional
simulation parameters: !R /2,=40 000 Hz, and dwell time=25 7s. Calculations were performed using exact eigenvalues and zeroth-order eigenvectors.
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V!1" =
!q

!0
,

m#0
!− 1"mA2,−m!3q"T2,m

m
. !B4"

With this expression one finds that the first-order corrections
Xl,m

!1" and Zl,m
!1" are zero except

X2,0
!1" =

!q

!0
f I

!0"f I
!1"-−/3

2
!A2,−1!3q" − A2,1!3q"". ,

X2,01
!1" =

!q

!0
f I

!0"f I
!1"-0

A2,92!3q"
2

. , !B5"

X2,02
!1" =

!q

!0
f I

!0"f I
!1"#9A2,91!3q"$ ,

and

Z2,m#0
!1" =

!q

!0
f I

!0"f I
!1"#!− 1"mA2,−m!3q"$ . !B6"
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40 The Hamiltonian for the coupling of the nuclear electric quadrupolar

moment to the surrounding electric field gradient is given by

Hq = ,
k=−2

2

!− 1"kR2,k-03
2
11/2 eQ

I!2I − 1"
T2,−k. ,

where R2,k is the electric field gradient tensor at the nucleus and the term
inside the square brackets is the nuclear quadrupole moment tensor. With
this definition R2,k is an irreducible spherical tensor defined in the labo-
ratory frame, and related to its principal axis system !PAS" values '2,k

!R"

according to

R2,k = ,
k!=−2

2

Dk!,k
!2" !3"'2,k!.

In the PAS, '
2,k!
!R" has the values of '2,0

!R"=eq /2, '2,01
!R" =0, and '2,02

!R"

='2,0
!R"6q //6, where eq is the expectation value of the electric field gra-

dient !efg" experienced by the nucleus in question, and 6q is the quadru-
polar coupling asymmetry parameter. 3q are the Euler angles !: ,; ,$"
between the laboratory frame and the PAS frame. The quadrupolar cou-
pling constant is given by Cq=e2qQ /h #or e2qQ / !4,<0h" in SI units$.
Often for convenience, however, a different irreducible spherical tensor
A2,k, related to R2,k by

A2,k = 03
2
11/2 #

eq
R2,k

is used. Here '2,0
!A"=1 //6 and '2,02

!A" ='2,0
!A"6q //6. Then we rewrite the

quadrupolar Hamiltonian as given in Eq. !33".
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