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Adiabaticity plays a central role in modern magnetic resonance experiments, as excitations with
adiabatic Hamiltonians allow precise control of the dynamics of the spin states during the course of
an experiment. Surprisingly, many commonly used adiabatic processes in magnetic resonance
perform well even though the adiabatic approximation does not appear to hold throughout the
process. Here we show that this discrepancy can now be explained through the use of Berry’s
superadiabatic formalism, which provides a framework for including the finite duration of the
process in the theoretical and numerical treatments. In this approach, a slow, but finite
time-dependent Hamiltonian is iteratively transformed into time-dependent diagonal frames until the
most accurate adiabatic approximation is obtained. In the case of magnetic resonance, the
magnetization during an adiabatic process of finite duration is not locked to the effective
Hamiltonian in the conventional adiabatic frame, but rather to an effective Hamiltonian in a
superadiabatic frame. Only in the superadiabatic frame can the true validity of the adiabatic
approximation be evaluated, as the inertial forces acting in this frame are the true cause for deviation
from adiabaticity and loss of control during the process. Here we present a brief theoretical
background of superadiabaticity and illustrate the concept in the context of magnetic resonance with
commonly used shaped radio-frequency pulses. © 2008 American Institute of Physics.

[DOL: 10.1063/1.3012356]

I. INTRODUCTION

Adiabaticity is a key concept in mechanics, in general,
and quantum mechanics, in particular.l Indeed, adiabatic pro-
cesses play a central role in modern magnetic resonance ex-
periments. Excitations with adiabatic Hamiltonians allow
precise control of the dynamics of the spin states during the
course of an experiment. This precise control is required in
magnetic resonance imaging2 in order to guarantee the reso-
lution and sensitivity which define the quality of an image
and its reliability for medical diagnosis. Adiabatic excitations
are also at the heart of experiments designed to record mag-
netic resonance signals outside the NMR magnet,3 with a
view to developing portable imaging systems.® Adiabatic
control of spin dynamics is then of direct relevance to struc-
tural characterization in both solid>~’ materials and, for ex-
ample, macromolecules in solution where adiabatic sweeps
are used for broadband spin decoupling®’ or dynamic polar-
ization of the sample. Finally, adiabatic excitations will
surely have potential for quantum computing applications
when a large number of operations are performed.'o

Although the basic idea behind an adiabatic process in
magnetic resonance is deceptively simple, in practice, many
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different experimental designs have appeared over the
yearsg’l L12 with the aim of providing the best possible com-
promise between efficiency, broadbandedness, and a plethora
of possible experimental imperfections such as offset,”'>'* rf
inhomogeneity,z"’?’14 or even modulations due to sample
rotation.” In contrast, little development has been made in the
theoretical description of adiabatic processes in magnetic
resonance. In the following we present a rigorous theoretical
approach for treating adiabatic processes in magnetic reso-
nance. We show how this approach provides considerable
insight into the mechanism of adiabatic spin dynamics and
employ an iterative approach to introduce the notion of su-
peradiabaticity for magnetic resonance. We believe that these
theoretical advances will provide new insights into designing
more efficient schemes for excitation in the future which will
directly improve the quality of the various experiments dis-
cussed above.

A. Adiabaticity and superadiabaticity

A proper description of any quantum-mechanical system
can be greatly simplified by choosing a suitable reference
frame in which the corresponding Hamiltonian is in diagonal
or block-diagonal form. "3 Notably, the use of a propagator
is more easily dealt with in a diagonal basis. Thus, the

© 2008 American Institute of Physics
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FIG. 1. (Color) Magnetization (red curve) and Hamiltonian (blue curve)
trajectories for inversion excitations with different adiabaticity Q factors.

Hamiltonian describing an adiabatic process can be repre-
sented in a time-dependent instantaneous diagonal
frame,'®!” called the adiabatic basis. The effective Hamil-
tonian obtained in this basis generally consists of the sum of
two contributions: the instantaneously diagonalized Hamil-
tonian, and the nonadiabatic coupling (the off-diagonal ele-
ments) which takes into account the finite rate at which the
Hamiltonian changes. This coupling term can be neglected
when the Hamiltonian is changing infinitely slowly, and the
process is deemed perfectly adiabatic. This is never the case,
in practice, and when analyzing and designing adiabatic pro-
cesses, the finite rate of change must be included in the treat-
ment.

In a series of papers in the 1980s, Berry18 provided such
a framework. He showed that the Hamiltonian in the adia-
batic frame can be retransformed (iteratively) into superadia-
batic frames. This theoretical treatment has not so far been
applied to magnetic resonance. Here, we show that the ap-
plication of this framework explains troubling discrepancies
in earlier theoretical descriptions of adiabatic processes in
magnetic resonance. Specifically, we will show that the de-
scription of adiabatic process in the (time-dependent) adia-
batic frame leads us to a new observation as follows. Usu-
ally, the adiabatic approximation requires the initial
Hamiltonian to be aligned with the density operator describ-
ing the initial state, and also requires that the rate of change
in the Hamiltonian must be much smaller than the Hamil-
tonian itself. This leads to the ideal type of magnetization
inversion trajectory, familiar in magnetic resonance, shown
in Fig. 1(a), and where the state of the system is always
colinear with the Hamiltonian.

So far, improvements of adiabatic processes have fo-
cused on the fulfillment of these criteria. Accordingly, exci-
tations with very low adiabaticity factors do not properly
lock the magnetization, which, in turn, is not properly in-
verted at the end of the trajectory, as shown in Fig. 1(c). It is
well known in NMR, however, that adiabatic processes with
adiabaticity factors as low as 5 can still achieve perfect mag-
netization inversions.'> This should be somewhat surprising
according to the usual adiabatic approximation, since this
would require neglecting a coupling term representing 20%
of the main interaction. Thus, although the magnetization is
not locked to the effective field during these processes, as
clearly shown in Fig. 1(b), the trajectory nevertheless pro-
ceeds smoothly to an exact inversion. In the following we
show how the above behavior actually corresponds to the
density operator being collinear with the effective Hamil-
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tonian at all times in some adiabatic frame. This behavior is
dubbed superadiabatic. We show here that superadiabatic be-
havior is indeed observed for many of the most commonly
used adiabatic processes used in magnetic resonance, namely
the hyperbolic secant'>"” and the tanh/tan'” pulse shapes.
This superadiabatic picture explains why these pulse shapes
work so well despite apparently low Q (adiabaticity) factors.

Il. RESULTS AND DISCUSSION
A. Time-dependent rotating frames

Considering the evolution of a system under a Hamil-
tonian that is slowly varying with time, Hy(#), this Hamil-
tonian can be diagonalized at any instant according to

D, (1) = V] (OHH(1)V|(1), (1)
where
V(1) =V (r)e MO (2)

and [I'y(z),D;(#)]=0. In the initial frame the propagator U,
for the system is then
t
Hy(s)ds

-

Uy(H)=T exp{— (i'h)

=V£(t)Te—(i/h)ft_oo[Dl(S)"'C1(5)]'15Vi*(_ ®), 3)

with T being the time-ordering operator. Since the diagonal-
ization is time dependent, the evolution will be governed by
the sum of a diagonal term D; and a correction C; which
appears to account for the “inertial fields” appearing in the
moving frame:

C,(0)==iV]TOV](»

=— TV, (0)e MO + T (). (4)

In the traditional adiabatic approximation, the parts of
C,(r) orthogonal to Dy(f) are neglected ([|C;(r)ott giag
<|D(2)| at all times), and only the parts of C,(#) that com-
mute with D;(¢) need then be retained. In the following, we
further require that time-dependent eigenvectors |n;(f)) of
H,(¢) undergo parallel transport by imposing

(my(D)]ry(1)y =0, (5)
and defining

Ly(0) =i iy (0Xn (0] = iV V(1) laiag- (6)

In this way, C,(z) is always orthogonal to D,(z), so in the
adiabatic limit we look for representations V(#) in which the
C,(¢) term can be completely neglected. The quality of this
approximation is conveniently expressed by the so-called
adiabaticity factor given by

0 min 2101

= . 7
d-=1[|C (D] 7
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FIG. 2. (Color) Graphical representa-
tion of the Hamiltonian in the static
frame (xq,y0,29), in the adiabatic
frame (x,,y,,z;) and in the superadia-
batic frame (x,,y,,25).

second adiabatic frame

(superadiabatic frame)

B. Berry’s adiabatic iteration

In practice, no real process is infinitely slow enough to
allow a proper adiabatic approximation. Thus, when analyz-
ing and designing adiabatic processes, the finite duration
(i.e., rate of change in the Hamiltonian) must be included in
the theoretical and numerical treatments. Berrylé’18 provided
such a framework. Instead of applying the adiabatic approxi-
mation to Eq. (3), a better description can be achieved by
considering the propagator in the frame defined by V; under
the Hamiltonian H,(f)=D;(¢) + C,(¢). Indeed H,(7) can itself
be instantaneously diagonalized into a second time-
dependent diagonal frame (see Fig. 2). Since, by tradition,
the frame defined by V; is dubbed the adiabatic frame, Berry
dubbed this second frame superadiabatic. In the following,
we will generally refer to the nth adiabatic frame.

In the superadiabatic frame, the instantaneous diagonal
term is

D,(1) = VIOH, () V (1), (8)
on which a new inertial field,
Cy(1) == VIO V(0), ©)

acts as a perturbation. In this case, the relevant adiabaticity
factor is the superadiabaticity factor Q, defined as
D@
Q0>= min ———. (10)
tef—][|Co ()
If the second adiabatic frame is closer to the evolving Hamil-
tonian than in the first frame, Q, will be bigger than Q; and
will be a more accurate description of the adiabaticity of the
process.
The scheme can be applied iteratively (as sketched in
Fig. 2), with the nth Hamiltonian given by

H,(1) =D, (1) + C,(1) =D,,(1) - iV, () V,,(1), (11)
where
iV I (OV(1) = ieT Vi)V, (1)e T — T (). (12)

Each transformation,

V(1) = V,,(t)e” T, (13)
diagonalizes H,_;() into D, (7):

D,(1) =V, (0H,.()V,(0), (14)

thus moving into a frame where, in principle, the Hamil-
tonian clings even more closely to the evolving state. The nth

time evolution propagator for the system in the nth instanta-
neous diagonal frame is

U,(=T exp{— (i) | [D,(s)+ C,,(s)]ds} . (15)

If the nth adiabaticity factor, given by

D,
- it A2 | 6
On = Jin G0 (16}

is sufficiently large, then in the nth frame, we make the adia-
batic approximation by neglecting C,(f). As before, one can
show that the adiabatic approximation for the propagator in
the nth instantaneous diagonal frame becomes

U,(1) = exp{— (i/ﬁ)Jt D,,(s)ds} . (17)

C. Phase and amplitude modulated pulses
in magnetic resonance

Berry introduced this approach to show that no real pro-
cess can ever be perfectly adiabatic (as will be discussed in
Sec. II D). He used the example of a spin % moving on a
cone (and using a different notation from that developed
above). This approach has never been applied to problems in
magnetic resonance, despite the extremely widespread appli-
cations of adiabatic spin rotations.

Adiabatic processes in magnetic resonance are typically
implemented using a phase and amplitude modulated radio-
frequency pulse to create an adiabatically changing Hamil-
tonian. As mentioned in Sec. I, if Q is very large, spin dy-
namics will be essentially adiabatic even if the process is not
infinitely slow. For a Q factor around 1, however, the spin
dynamics should not be adiabatic. Here we use the supera-
diabatic iteration process to analyze some commonly used
adiabatic inversion pulse shapes and show how their inver-
sion efficiencies can only be understood using optimal su-
peradiabatic frames. This analysis notably provides us with a
rigorous definition of adiabaticity for magnetic resonance.

In the following discussion, we restrict ourselves to the
case where the Hamiltonian is defined by an isotropic shift,
Q, (e.g., a single spin in solution) and a rf excitation of
duration [0, 7] in the transverse plane. In the rotating frame,
(x,y,z), the Hamiltonian®® is given by



204110-4

Deschamps et al.

J. Chem. Phys. 129, 204110 (2008)

rotating
frame

Ao (MHz)

(B)

modulated

T FIG. 3. (Color) Graphical representa-
tion of the Hamiltonians in the rotating

frame (x,y,z) (a), in the modulated
frame (x(,9,20) (b) and in the three
first adiabatic frames (x;,y;,2)),
(x2,¥2,22), and (x3,y3,23) [(c)~(e)].
The excursion of the Hamiltonian
from the z axis of each frame [«,(?) is
plotted [(g)-(j)] for two tanh/tan exci-
tations (f) with w**=40 kHz and ex-

citation lengths of 2 ms (dashed lines)
T and 100 us (continuous lines), re-
spectively. The excursion of a;, a,,
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0 T2
time
H(t) = QL + w(1)(I, cos ¢(2) + I sin ¢(7)), (18)

where w,(7) and ¢() describe the time-dependent amplitude
and phase of the excitation, as illustrated in Figs. 3(a) and
3(f) for the case of a tanh/tan shape pulse.12 Transforming
this into a modulated frame (xy,yq,Zp) rotating about z to
remove the time dependence of ¢(f) ' gives

Hy(1) = AQ(t)IZO + wl(t)IxO, (19)
where AQ)(?) is the instantaneous carrier frequency offset,
given by

AQ() =Aw(r) -, (20)

where Aw(t)=de(t)/dt. This is sketched in Fig. 3(b). The
iterative transformations into different adiabatic frames pro-
vide a stronger insight into the behavior of the system. To

begin with, we place ourselves in a frame which follows the
Hamiltonian. This first (n=1) adiabatic frame (x;,y;,z;) [see
Fig. 3(c)] is tilted by an angle a,(#) with respect to the modu-
lated frame, given by

ay(t) = arctan( Aw(t)) ; (21)

w;(t)

and illustrated in Fig. 3(g) for the tanh/tan shape pulse. The
orthogonal matrix that achieves this transformation is a
simple rotation around the y, axis and as a consequence I';(7)
will be zero and one obtains

V(1) = Vy(2) = ey, (22)

In this frame, the Hamiltonian is instantaneously diagonal:
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D, (1) = Vi(OHy() V(1) = QL , (23) .

with
O, = \/wf(t) +Aw?(), (24)

and is subject to a perturbation C,(), given by

day(t) I

Cl(t)=—‘ dt Y1

(25)

At this stage, we rediscover the conventional adiabaticity
criterion"® which requires that

day(t)
ID,@)l|> [Ci(D] or Qy(5)> #, (26)
with
Q
0, = min T(’)>1, (27)
1€f0,7] |

such that C,(f) would be truncated by D;(7) at all times dur-
ing the excitation. If this criterion is fulfilled, C,(¢) can be
neglected and the Hamiltonian is coincident with D;(#) over
the whole pulse. Hence, magnetization can be locked in this
frame by such a Hamiltonian. If not, the resulting Hamil-
tonian

H,() =D (1) + C,(2) (28)

in the first adiabatic frame is in fact tilted from the z; axis by
an angle a,(f) [see Fig. 3(c)] which is

IC, ]
I, (@)

a,(#) = arctan (29)

that is

= (30)
: xgléﬂ]tan a ()’
The interest of this clearly emerges when comparing two
different tanh/tan shape pulses applied with the same w; but
with different pulse durations (2 ms versus 100 us). Both
pulses invert magnetization almost equally well on reso-
nance, even though the Q; factor for the 2 ms pulse is much
larger than 1 [Q;=95 as can be deduced from the dashed
curve plotting a;(7) in Fig. 3(h)] whereas the short pulse has
Q,=6. Thus, one would not expect inversion with the short
pulse to be as good as with the longer pulse. However this is
not consistent with experiment. For this latter excitation, the
above procedure can then be applied iteratively with the
hope of more accurately following the Hamiltonian. Defining

V,(t) = 1Oy, (31)

we transform the adiabatic frame (x;,y;,z;) into the supera-
diabatic frame (x;,y,2,), where

da—l(t)lx 5 (32)

Dz(t) = 92(1)122, and Cz(t) = e .

with
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O,(1) = VQI(2) + (1), (33)

as illustrated in Fig. 3(d). Most interestingly, Fig. 3(i) shows
that the new diagonal term D,(7) is subject to a relatively
weaker perturbation C,(f), such that the angle a(t)
=arctan[[|C,(0)||/ D[] =[IC2(0]/[Do(®)[[] has a smaller
excursion during the whole excitation. In this case, the mini-
mum value of @, =~ 100 and the pulse fulfills criteria for adia-
baticity thereby explaining the excellent inversion behavior
observed. Even better representations, where the evolving
Hamiltonian may appear even more static, could be obtained
with additional iteration, using transformations

V(1) = exp{— ian_l(t)ei(n_l)("/z)lzn—xlyn_1e-i(n_l)("/z)lzn—l}»
(34)

which progressively moves the (n—1)th adiabatic frame
(Xy—1>Yn-1,2n1) into the nth adiabatic frame (x,,y,,2,)
where the diagonal Hamiltonian is

D, (=0, , (35)

with
Q, ()= \/Qﬁ_l(t) + dﬁ_z(t), (36)

and where the perturbation will be

Cn(t) e dn_l(t)ei(n—l)(wlz)lzn_lly e‘i(”‘l)("/z)lzn_l. (37)
n-1

This is illustrated for the third adiabatic frame in Figs. 3(e)
and 3(j), with Q3 values of 176 and 1.3 X 10°. These ex-
tremely high Q values in the superadiabatic frame explain
why certain adiabatic pulses with low Q values in the adia-
batic (k=1) frame still produce essentially perfect inversion
in magnetic resonance.

D. Divergence of the superadiabatic iterations

While each iteration can bring us into a frame where the
evolving Hamiltonian will appear to move closer and closer
around the north pole, eventually continued iterations, as
Berry18 showed, must bring us into frames where the evolv-
ing Hamiltonian spirals further and further away from the
pole. This must be true because any finite duration process
will always have nonadiabatic effects (transitions), and these
cannot be escaped simply through iterative frame transfor-
mations.

This eventual divergence in the nth frame can be under-
stood by close examination of the €,(r) and a,(7). If
|ég(1)| < | (9)], then at each iteration (), =), and the pro-
file of the excursion a,(f) of the effective field in the nth
adiabatic frame satisfies the iterative differential equation

@, (t) _ &,_(1) _ Ld"ao
0. Q, o dt

a,(t) = arctan ; (38)
independently from the details of the specific excitation un-
der consideration (i.e., independently of the amplitude and
phase modulation profile employed). From Egs. (37) and
(38), one can expect the C, to become smaller with initial
iterations due to the 1/ dependence, as seen in Fig. 3.
Eventually, however, the number of derivatives of « re-
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FIG. 4. (Color) Q, factors (n=1-10) for two tanh/tan excitations. The ex-
citation lengths 7, are 100 us (circles) and 40 us (squares), respectively,
(Aw=1 MHz, 0]*™*=40 kHz).

quired to calculate «, at higher iterations will cause the a, to
grow beyond (), in magnitude. As detailed in Appendix B,
the maximal amplitude of «, will vary according to

n!

max |a,| >« :
te[—w,f,,ll . (@;7,)"

(39)

The initial decrease from the (w;7,)" is ultimately over-
whelmed by the increase from n!. Thus, the optimum supera-
diabatic frame is n={), 7,, where the smallest maximal am-
plitude is

@yr, = AwV2mo,T,e” 1. (40)

E. Criteria for magnetization inversion:
Superadiabatic Q factors

The divergence of the iterated change in frame appears
clearly in Fig. 4, where the first ten Q,, factors are plotted for
two tanh/tan excitations. The ordinary Q; factors of 6.6 and
2.6, respectively, would suggest that neither of these two
processes is adiabatic. Nonetheless, the 100 ws pulse inverts
magnetization on resonance with an efficiency of more than
99%, while the second has an inversion efficiency of less
than 95%.

In Fig. 4, for both excitations, the Q, grow to a maxi-
mum at n=6 and 4, respectively, and then decrease as ex-
pected from the considerations of divergence. For the
100 us excitation, however, the Q, factors are greater than
100 as soon as n>2 with a maximum for Qg of roughly
1500. This means that the perturbation C,(¢) varies slowly
(adiabatically), and that the spin system can thus be locked
along the effective field Q,(1)I, in an adiabatic frame. On
the contrary, in the case of the short excitation, magnetiza-
tion is never locked sufficiently well to the field, since in all
the frames the perturbation C,(7) is not negligible and the
adiabatic condition is thus never achieved. By defining a
superadiabatic *Q factor as

S M)]
SQ‘“‘J“Q,,‘m:“[,ﬁ%i‘.’i](|1nn<t>|| ’ (‘“)

we can restate a criterion for good magnetic resonance adia-
batic processes as follows: perfect magnetization inversion
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can be achieved whenever the magnetization is locked in
ANY of the superadiabatic frames, i.e., if 1/°Q is negligible.
As explained in Sec. II D, the optimum frame occurs when
n=max w;7. With this definition we now find that the effi-
ciency of inversion is better characterized by the value of the
’Q factor than by the traditional Q factor, which does not
take the appropriate locking process in effect. For example,
both a 100 us hyperbolic secant shape pulse13 with 200 kHz
sweep and 40 kHz rf power and a tanh/tan shape pulse of
40 ws with a sweep of 2 MHz and 40 kHz rf power have
identical Q factors of 2, even though their inversion efficien-
cies are 90% and 95%, respectively. This difference in inver-
sion efficiencies is easily explained once one realizes that
their superadiabatic *Q factors are 6.3 and 8.7, respectively.

F. Superadiabatic magnetization trajectories

The considerations of Secs. II A through II E now allow
us to fully understand the inversion efficiencies in Fig. 1. The
approach also provides a tool for accurately describing the
magnetization trajectories and notably the anomalous trajec-
tory in Fig. 1(b).

In the case of a perfectly adiabatic process, the magne-
tization is aligned with the Hamiltonian H,, at the beginning,
stays locked during the whole excitation, and is static in the
n=1 adiabatic frame. The trajectory in the modulated frame
can then be explicitly evaluated. With an initial state in the
modulated frame |i(0))=|zo,+) the trajectory is given by

(1)) = V()| h(0)) = explial,) |20, +),

(87 (87
=cos;0|zo,+) + sin70|zo,— ). (42)

The magnetization thus travels from the +z, to the —z, axis
with a perfectly circular trajectory in the xy—z, plane [Fig.
5(a)]. On the contrary, the magnetization will not appear as
static anymore in the n=1 frame in the case of a superadia-
batic process. If locking is achieved in the n=2 adiabatic
frame, the magnetization will feature an excursion in the
v1-z; plane when viewed the n=1 frame. When transformed
back into the initial modulated frame, this excursion will
appear as a deviation from the circular trajectory [Figs. 5(b)
and 1(b)]:

|40(2)) = Vi(£)Vi() | 906(0)) = explicroL,) (= i, L) ¢4(0)).
(43)

However, one should note that, as with all adiabatic pro-
cesses, if the initial state is not aligned with the Hamiltonian
in the most relevant (adiabatic or superadiabatic) frame, then
the magnetization will precess around the field and will not
necessarily follow the Hamiltonian.

More generally, if the magnetization starts aligned with
the Hamiltonian H,, in any nth frame and remains locked
during the process (according to the superadiabaticity crite-
rium defined above), the trajectories in any upstream frame
k<n can be calculated explicitly as
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FIG. 5. (Color) Magnetization trajec-
tories (top and side views) in the
modulated frame (n=0) and in the first
three adiabatic frames, for different
schemes using tanh/tan pulses at vary-
ing length (w;=40 kHz,
Aw=2 MHz). (a) 7,=1 ms resulting

in locking in the n=1 adiabatic frame;
(b) 7,=200 us resulting in locking in
the n=2 adiabatic frame; (c) 7,
=100 us resulting in locking in the
n=3 adiabatic frame; (d) 7,=70 us
resulting in locking in the n=4 adia-
batic frame.

() =TT V](0)| 4 (0)). (44)
i=k

Clearly, the complexity of the resulting trajectory grows with
the number of frame changes needed to reach a superadia-
batic condition [Figs. 5(c) and 5(d)].

G. Conclusion

We have explained through the introduction of the no-
tion of superadiabaticity why adiabatic processes in magnetic
resonance often work when the conventional criteria for
adiabaticity says they will not. Specifically, we have shown,
using time-dependent diagonal frames, how to derive ana-
lytical expressions for the effective Hamiltonians and the
spin system propagator during an adiabatic process. The
model is applied to adiabatic rf sweeps commonly used in
NMR experiments. The spin system evolution during these

adiabatic processes shows that the adiabatic approximation
cannot be rigorously made for commonly used adiabaticity
factors, and yet, these excitations manage to invert the mag-
netization. In fact, we show here that the magnetization is
effectively locked, not by the effective field in the conven-
tional modulated frame, but rather by the effective field in an
adiabatic representation. A new superadiabaticity factor is
introduced and shown to provide a more relevant character-
ization of these adiabatic magnetic resonance excitation
schemes. Such a concept opens the possibility for new routes
for the optimization of adiabatic process in magnetic reso-
nance, and following trajectories in the superadiabatic frames
may shed light in designing new processes in areas as diverse
as magnetic resonance imaging, where it could lead to im-
proved image contrast, quantum computing, where it could
lead to better control of quantum coherences, and to struc-
tural characterization where it will lead to more accurate dis-
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Vi) = Va(t) e O

-
v

Vl (t) = e—ia(t)l,c' e—’iﬂlvl
I'i(t) = &(t)I,, cos?

- :II() \\

\yo

tance determinations in NMR studies in liquid and solid-
state, in proteins or inorganic materials. This method could
be extended to more complicated Hamiltonians, and it has
the capability to provide analytical expressions in magnetic
resonance for coupled spin systems as well as for nuclei with
spin 1> %
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APPENDIX A: BERRY’S EXAMPLE

Here, we reformulate the example given in Berry’s18
orginal treatment according to the formalism developed in
the main text.

1. Adiabatic limit

Consider the case of a spin % system where the Hamil-
tonian makes one sweep around on a cone of opening angle
& with a variable azimuth «a(f) [Fig. 6(a)] according to

H(1)/f = w{I, cos & + [, cos a(t) + I, sin a(t)]sin 9}

=w, PRl e—imyllzo ey gial; (A1)

and we have Hy(—©)=Hy(+»), that is a(-*)=0 and
a(+x)=21.

This Hamiltonian can be transformed into the instanta-
neous diagonal frame [Fig. 6(b)], (x,y,,z;), starting first
with a rotation about the z, axis in the stationary frame
(x0,Y0,20) by an angle a(r) followed by a rotation about the
y' axis in the rotating frame, (x',y',z’), by an angle 9. Note
that zy=z' and y’ =y,. Thus, applying the transformation
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21
D (¢
FIG. 6. (Color) Hamiltonian sweeping
. around a cone of opening ¥ with vari-
able azimuth a(t) viewed from the
—iT1(t) laboratory frame (a) and from the
= frame in which the Hamiltonian is in-
stantaneously — diagonal  (adiabatic
frame) (b).
V,(f) = e eWlye 0y (A2)
to Hy(z) yields
D, = VI(Hy()V () = L, . (A3)
The condition
(ny(1)|ry (1)) =0, (A4)

leads to

(m(@)iV]I (@) V] (D)|ny(2))

= (m(O)|eM ViV V(e =T (1)|ny (1)) = 0.
(A5)

Thus, we enforce parallel transport of the time-dependent
eigenvectors by defining:

nmﬂ§MMMMMﬂwmwmmw (A6)

Since

iVi()V,(1) = ¢()[L,, cos 9+1, sin 9], (A7)
we define

I'y(2) = &)1, cos 9. (A8)

The adiabatic approximation propagator requires that [C,||
<|Dy||, that is, |é&(f)sin 9| <w,. If this is the case, in the
instantaneous diagonal frame the propagator becomes

Ul(l‘) = eilzl cos ﬁfiwd(s)dse—iwllzlt' (A9)
The initial state function in the initial instantaneous diagonal
frame is an eigenstate of the initial Hamiltonian:

| (= %)) = |z1,+), (A10)
that 1is,
| (= 0)) = V(= )|ty (= %))
=cos§|zo,+>+singlz0,—). (A11)

In the limit |&(¢)sin 9| < w,, in the instantaneous diagonal
frame, the state evolves adiabatically according to
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[ (8)) =0 (0)|ghy (- ) = ¢iluntecos 01l a(o)ds)i 2zg,4).
(A12)

After a full rotation of the Hamiltonian, where [*rd(s)ds
— 2, the system will end up to its starting position, but
acquires a phase which comprises a dynamical contribution
as well as a geometric one:

le(t» = e—i(wlt+27'r cos ﬁ)/2121,+>. (A13)

The geometric contribution to this phase2l can be evaluated
by comparing the system to the initial state of an unevolved
(static) Hamiltonian, which acquires only a dynamical phase:

l@1(1)) = e 12|z 54), (A14)

so the phase difference acquired during the 27 rotation of the
field is

vi=—m(1-cos 9). (A15)

2. lterative approach

Now we reformulate the example of the magnetic field
sweeping around a cone using the iterative approach devel-
oped in Sec. II B. Without the adiabatic approximation, the
full Hamiltonian in the adiabatic frame,

H ()= wllzl + glelbcos ﬁlzx[d(t)lxl sin ,&]e—ia(t)cos L2
(A16)

The Hamiltonian can be transformed into a new instanta-
neous diagonal frame, (x,,y,,25), using the unitary transfor-
mation

V,y(2) = /@01, cos Bgianlyr (A17)
where

ay(t) = arctan(M>, (A18)

Wy

to obtain

Dy (1) = VIOH, () Va(1) = L, (A19)
where

= @} + (a(p)sin 9)? (A20)
and

iVH() V(1) = D), cos § sin a(f) - ida(1)L,,

+ dr(t)Iz2 cos ¥ cos a,(1). (A21)

Thus, we define

I'y0) = c'r(t)IZz cos I cos ay(1), (A22)

and make the adiabatic approximation to obtain propagator
in the n=2 instantaneous diagonal frame
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U,(1) = exp{ilZZ cos ﬁf a(s)cos az(s)ds}

t
Xexp{— if wg(s)IZst} "

The initial state of the system |i,(—)) is an eigenstate of
the Hamiltonian D,(—%), but it is also an eigenstate of
D,(~):

[ (= ®)) = |29, +) = |21, 4).

At any time, in the instantaneous diagonal frame, in the adia-
batic limit of &(f)sin ¥ sin a,(t)/ w,— 0, the state of the sys-
tem is

[4a(2)) = Un(1)[¢hr(— ).

Thus, after one complete rotation (at t— ), where a(?)
— 277, the accumulated phase is

i = %{cos aJ ¢(s)cos B(s)ds}
+ -;—{— f wz(s)ds}.

As in Beny,I8 we explicit the consequences of the limit
a(t)sin ¥ sin a,(t)/ w,— 0 by expanding the result in series
of a(1):

(A23)

(A24)

(A25)

(A26)

a(s)cos Jw; -

a(s)cos ¥ cos ap(s) = —— = a(s)cos ¥
)
9 sin® &
cos s;n pr (A27)
2wi
and
sin? 9d?
Wy = Wy e (A28)
2(1)1
so that
t t 9 si 2 9
Y=+ 1/2f a(s)cos 9 — 1/2] wcf
—w & 2wy
d * sin? 9¢?
-1/2 w;—1/2 S
= —o0 2(1)1
k sin? 9 ("
=— |:7r(1 —cos 93) +f wds + 2 &2 (s)ds
—0 4(1)1 —o
. 2 t
9 0
P e s f d3(s)ds]. (A29)
4(1)1 —x

An eigenstate of a static magnetic field (waiting in the same
position as it was at —) would have acquired only a phase:

YFCf = f w2ds ’

-0

(A30)

so the phase difference acquired during the 27 rotation of the
field is



204110-10  Deschamps et al.

. @ zlfl(t)\l/\:t
G- O

n= 2

£ @—J\ﬁ
G- @

n==6 n =50

FIG. 7. (Color) Maclaurin’s sinusoidal spirals and universal Q, factors for

various 7.
sin? 9 [*
a“(s)ds
4(1)1 —o

. 2 00

sin® ¥ cos ¥

+ n—z f &’ (s)ds
4wy o

Y,=—| m(1 —cos 9) +

(A31)

APPENDIX B: DIVERGENCE OF THE
SUPERADIABATIC ITERATIONS FOR AN NMR PULSE

If we assume, in each nth adiabatic frame, that the «a, of
Eq. (38) are smooth functions of 7 with ,(0)=a,(7,)=0,
then for large values of n the solution of this equation takes
an universal form

a,(t) = Ao———f,(1), (B1)

(o, p)”
with
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. 2 )—1/2(n+1)
w7,

|1 t
Xs1n[—nw+ (n+ 1)arctan( )] (B2)
2 ’ w7,

fat) = (1

This limit holds independently from the details of the spe-
cific excitation under consideration (i.e., independently from
the shape of the amplitude and phase modulation profile
employed). The solutions of Eq. (B2) describe a family of
curves, which are the projections of Maclaurin’s sinusoidal
spirals (the “universal loops” described by Berry), some of
which are described in Fig. 7.
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