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Abstract

A slow speed MAS spectrum contains a pattern of spinning sideband resonances separated by integer
multiples of the rotor frequency and centered about an isotropic frequency. The 2D signal acquired in a
two-dimensional Phase Adjusted Spinning Sideband (PASS) experiment correlates this slow speed MAS
spectrum, obtained in the direct dimension, to an indirect dimension spectrum containing the same pattern
of spinning sideband resonances centered about a frequencyof zero. An affine transformation is used to
convert the acquired 2D PASS signal into a 2D signal that correlates a spectrum of pure isotropic frequencies
to a spectrum of spinning sideband resonances with no isotropic frequency contributions. The conventional
affine transform applied to 2D PASS consists of an active shear ofthe signal parallel to the indirect time
domain coordinate followed by a passive scaling of the indirect time domain coordinate. Here we show that
an alternative affine transform, previously employed in the Two-dimensional One Pulse (TOP) experiment,
can be employed to create the same 2D signal correlation withan enhanced spectral width in the anisotropic
(spinning sideband) dimension. This enhancement can provide a significant reduction in the minimum
experiment time required for a 2D PASS experiment, particularly for spectra where the individual spinning
sideband patterns are dispersed over a wider spectral rangethan the isotropic resonance frequencies. The
TOP processing consists of an active shear of the signal parallel to the direct time domain, followed by an
active shear of the signal parallel to the new indirect time domain coordinate followed by a passive scaling of
the new direct time domain coordinate. A theoretical description of the affine transformation in the context
of 2D PASS is given along with illustrative examples of29Si in Clinoenstatite and13C in L-Histidine.

1. Introduction

Frequency anisotropy in magnetic resonance
spectroscopy is a rich source of detail concerning
structure and dynamics at the macroscopic level
down to the molecular level. At the macroscopic
level these anisotropies can occur as a result of in-
homogeneities in the external magnetic field, vari-
ations in magnetic susceptibilities, or through the
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intentional use of magnetic field gradients as in
magnetic resonance imaging. At the molecular
level frequency anisotropy arises through magnetic
dipolar couplings amongst nuclei and through in-
teractions of the nuclear multipole moments with
surrounding electrons. While the manifestation of
these molecular level anisotropies in solution state
NMR is primarily through relaxation, its effects
are seen directly in solid-state NMR spectra as the
powder pattern lineshape.

Early in the history of NMR it was realized
that inhomogeneous anisotropic broadenings can
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be removed through sample rotation[1–3]. In so-
lution state NMR, sample rotation is a standard
approach to average away broadenings from mag-
netic field inhomogeneities[1], while magic-angle
sample spinning (MAS)[2, 3] has become a pop-
ular and routine method in solid-state NMR for
eliminating second-rank anisotropic broadenings,
particularly when combined with the sensitivity en-
hancement of cross-polarization (CP/MAS)[4, 5].
With sample rotation, the inhomogeneous line-
shape breaks up into a set of spinning sidebands
centered about a centerband lineshape and spaced
at integer multiples of the spinning frequency. As
the spinning frequency is increased the intensities
of the spinning sidebands are reduced and trans-
ferred into the centerband. In the limit of infinite
spinning speed only the centerband frequency re-
mains.

A few years after the introduction of CP/MAS,
Herzfeld and Berger[6] developed an approach for
analyzing the sideband intensities in a slow speed
MAS spectrum to obtain the same details about the
anisotropic spin interactions as found in the static
powder pattern lineshape. With the introduction of
two-dimensional NMR spectroscopy[7], a number
of approaches have been designed to correlate a
high or infinite speed MAS spectrum with either
the static[8–13], slow speed MAS spectrum[14–
18] or only spinning sideband intensities[19, 14–
18]. One of the more popular approaches is the el-
egant Phase Adjusted Spinning Sidebands (PASS)
experiment of Dixon[19]. While 2D PASS[16] ro-
bustly correlates isotropic frequencies to spinning
sideband patterns, it has a drawback that experi-
ment times can become lengthy when spectra con-
tain sites having a large number of spinning side-
bands. In such situations, the sampling rate in
the indirect dimension is increased or the spinning
speed is increased. The latter approach, however,
could result in a loss of sideband information from
other sites with smaller anisotropies. Here, we de-

scribe an alternative approach for processing 2D
PASS signals, based on the TOP experiment[20–
22], which increases the spectral width in the
anisotropic (spinning sideband) dimension without
increasing the sampling rate in the indirect (ro-
tor pitch) dimension (or even changing the spin-
ning speed). We refer to this combination of TOP
processing applied to the 2D PASS signal as the
TOP-PASS experiment. This new approach can
provide a significant reduction in the minimum ex-
periment time required for a 2D PASS experiment,
particularly for samples with large anisotropies as
well as those simply having long relaxation times.

2. Experimental

NMR experiments on Clinoenstatite, MgSiO3,
were performed on a Bruker Avance operating at
a field strength of 9.4 Tesla corresponding to an
operating frequency of 79.576 MHz for29Si with
a 4 mm Bruker MAS probe spinning at 1000± 2
Hz using29Si rf field strength of 94 kHz. NMR ex-
periments onL-Histidine were performed on a hy-
brid Tecmag Apollo-Chemagnetics CMX II NMR
spectrometer operating at a field strength of 9.4
Tesla, corresponding to an13C NMR frequency of
100.605 MHz and a1H NMR frequency of 400.068
MHz, and using a 4 mm Chemagnetics double res-
onance MAS probe spinning at 1500± 2 Hz with a
1H rf field strength of 83 kHz for initial excitation
and TPPM decoupling, a1H-13C cross-polarization
contact rf field strength of 104.17 kHz and contact
time of 1.1 ms. An exponential apodization of 50
Hz in the direct dimension and 100 Hz in the in-
direct dimension was applied to all 2D datasets.
L-Histidine monochloride monohydrate was ob-
tained from Sigma Aldrich and used without fur-
ther purification. The acquisition time for a single
2D PASS cross-section in the indirect dimension
for Clinoenstatite andL-Histidine was 9 hours and
1.5 hours, respectively.
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3. Results and Discussion

3.1. Bloch Decay MAS

The first-order contribution of the nuclear
shielding to the NMR frequency for a single crys-
tallite as a function of rotor angle and phase can be
expanded in a Fourier series[23] as

Ω
(1)
σ (θR, φR) = ̟0(θR, α, β)

+
∑

m,0

̟m(θR, α, β)e
im(φR+γ),

(1)

whereθR is the rotor angle,φR is the rotor phase,
α, β, andγ are the Euler angles between the ro-
tor coordinate frame and the crystallite coordinate
frame. In the simple Bloch decay MAS experi-
ment the signal phase as function of time,t, where
φR(t) = ωRt + χR, is

Φ(t) =

t∫

0

Ω
(1)
σ (θR, φR(t′)) dt′

= W0 t +
∑

m,0

Wmeim(χR+γ)
[

eimωRt − 1
]

,

(2)

whereχR is the initial rotor phase, and we define

W0 = ̟0(θM, α, β), (3)

and

Wm =
̟m(θM , α, β)

imωR
. (4)

HereθM = cos−1(1/
√

3). One can show[23] that
the Bloch decay MAS signal is given by

sB(α, β, t, χR) = s
e(t) eiW0t

×
∑

N1,N2

AN1A∗N2
e−iN1ωRtei(N2−N1)(χR+γ),

(5)

where

AN =
1
2π

2π∫

0

exp





i
∑

m,0

WmeimΘ





eiNΘdΘ, (6)

and s
e(t) represents the envelope function due to

the relaxation. A partial averaging of the Bloch de-
cay signal over the angleγ eliminates the depen-
dence on the initial rotor phase,χR, yielding

〈sB(α, β, t)〉γ = s
e(t) eiW0t

∑

N

|AN |2e−iNωR t. (7)

The Bloch decay MAS signal from all crystallites,
SB(t), is then given by

SB(t) =
∫ 2π

0
dα
∫ π

0
sinβ dβ 〈sB(α, β, t)〉γ

= s
e(t) eiW0t

∑

N

INe−iNωRt,
(8)

where

IN =

∫ 2π

0
dα
∫ π

0
sinβ dβ |AN |2. (9)

Notice that W0 during MAS is only dependent
on isotropic frequency contributions, whereas the
spinning sideband intensities,IN , are only depen-
dent on anisotropic frequency contributions.

3.1.1. TOP

One can rewrite Eq. (8) in the form

S(t1, t2) = s
e(t2)eiW0t2

∑

N

INe−iNωR t1, (10)

and visualize the 1D Bloch decay MAS signal from
a rotating sample as a signal filling a 2Dt1–t2 co-
ordinate system, as illustrated in Fig. 1. Note that

SB(t1 + ntR, t2) = SB(t1, t2), (11)

wheretR = 2π/ωR andn is an integer. The signifi-
cance of this coordinate system is that the isotropic
frequency contributions are removed along thet1
dimension, and the anisotropic frequency contri-
butions are removed along thet2 dimension. This
coordinate system is particularly useful for under-
standing a number of important solid-state NMR
experiments for manipulating rotary echoes and
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Figure 1: Solid circles and arrows represent the sampling tra-
jectory of the 1D Bloch decay MAS signal (blue circles) and
its complex conjugate signal (brown circles) in thet1–t2 co-
ordinate system. The slope of the sampling trajectory in the
t1-t2 coordinate system is 1. Identical signal run parallel, sep-
arated bytR in t1 and t2, respectively. Only anisotropic fre-
quency contributions are present along thet1 dimension, and
only isotropic frequency contributions are present along thet2
dimension.

their associated spectral spinning sidebands. Prob-
ably the simplest of these is the Two-dimensional
One Pulse (TOP) processing approach [20–22],
which samples the 2D signal of Eq. (10) using
identical 1D Bloch decay signals running parallel
to each other and separated bytR in both t1 andt2,
as shown in Fig. 1.

In the TOP approach, one first generates a
pseudo-2D signal,Stop(ǫ, t), in a ǫ–t coordinate
system from the 1D Bloch decay (or rotor synchro-
nized Hahn echo) signal,SB(t). This is illustrated
in Fig. 2A, where a sampling ofStop(ǫ, t) for posi-
tive and negative values ofǫ is generated using the
relationship

Stop(ǫn = n2π/ωR, t) = SB(t), (12)

for a range of positive and negative integern val-
ues. The 2D signal constructed in this manner has
no decay from relaxation along theǫ dimension.
This 2D signal produces a pure absorption mode

[ []*= ]
0 0

Figure 2: Scheme for generating the pseudo-2D signal for
TOP processing from the 1D Bloch decay signal in a rotat-
ing sample. (A) Identical Bloch decay signal are laid down
in a coordinate system at integer multiples of the rotor pe-
riod along theǫ dimension. (B) The complex conjugate of the
1D Bloch decay signal is used to generate a Bloch decay sig-
nal going backward in time. (C) Identical complex conjugate
Bloch decay signals are placed in opposite quadrant in thet–ǫ
coordinate system. (D) The TOP signal before application of
the affine transformation.
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2D spectrum since it is generated for positive and
negative values ofǫ, as illustrated in Fig. 2A. If
desired, a full sampling of the TOP signal in all
four quadrants can be generated using the complex
conjugate of the Bloch decay signal,S∗B(t), as il-
lustrated in Fig. 2B and 2C. In the generated 2D
signal, Stop(ǫ, t), acquired as a function ofǫ and
t2, the anisotropic frequency contributions are refo-
cused into a echo along the lineǫ + t1 = 0, and the
isotropic frequency contribution is refocused along
t = 0, as shown in Fig. 2D.

After the 2D signal,Stop(ǫ, t), is created, an
affine transformation, as illustrated in Fig. 3, is ap-
plied to separate the isotropic and anisotropic fre-
quency contributions into orthogonal dimensions.
For the TOP signal this is performed as a double
shear, starting with a shear parallel to thet coordi-
nate with a shear ratio ofκt = −1, followed by a
shear parallel to thet′2 coordinate with a shear ratio
of κt′2 = 1, according to





t2

t1





=





1 1

0 1





︸    ︷︷    ︸

Kt′2





1 0

−1 1





︸      ︷︷      ︸

Kt





ǫ

t





=





0 1

−1 1









ǫ

t





.

(13)

The application of this affine transformation to
Stop(ǫ, t) yields the TOP[22] signal in Eq. (10)
whose Fourier transform yields a 2D spectrum
correlating isotropic and anisotropic frequencies.
Prior to the final 2D Fourier transformation, a
matched-filter apodization can be applied along
the t2 (isotropic) dimension to improve sensitiv-
ity. Any apodization along thet1 (anisotropic, side-
band) dimension, however, is applied entirely for
cosmetic reasons, creating a purely artificial line
broadening of the sideband resonances. Most im-
portantly, note that the application of this affine
transformation to the original digital sampling

Figure 3: TOP transformation ofS(ǫ, t) into a 2D signal that
correlates isotropic and anisotropic frequencies. An affine
transformation,At, consisting of a shear parallel tot, creates
a 2D signal with anisotropic frequencies refocused along the
t′2 axis and the isotropic frequences refocused alongt + ǫ = 0.
The green dashed line in the top figure represents the passive
affine transformation of the 2D coordinate system to create a
time coordinate,t′2, along which the 2D signal is unaffected
by the anisotropic frequency contributions. AfterAt′2

, a shear
parallel tot′2, a 2D signal with anisotropic frequencies refo-
cused along thet2 axis and isotropic frequencies is refocused
alongt1 is obtained. The red dashed line in the middle figure
represents the passive affine transformation of the 2D coordi-
nate system to create a time coordinate,t1, along which the 2D
signal is unaffected by the isotropic frequency contributions.5



rates,∆ǫ and∆t, yields transformed sampling rates
of ∆t2 = ∆ǫ = tR and∆t1 = ∆t, respectively, after
the double shear transformation.

In Fig. 4 is an example of the application of the
TOP processing applied to a 2D signal,Stop(ǫ, t),
constructed from the29Si NMR Hahn echo sig-
nal of polycrystalline Clinoenstatite. Clinoenstatite
has two inequivalent tetrahedrally coordinated (i.e.,
Q(2)) silicon sites, resolved at -85.2 ppm and -82.8
ppm in the isotropic dimension, and exhibit similar
nuclear shielding anisotropies, as expected[24, 25],
in the sideband dimension.

A limitation of TOP processing applied to a 1D
Bloch decay (or rotor synchronized Hahn echo)
MAS signal is that the spectral width inω2, the
isotropic frequency dimension, is limited to inte-
ger divisors of the rotor frequency. This cannot be
easily corrected by increasing the rotor frequency
since it also reduces the information content in the
sideband intensities. Nonetheless, TOP process-
ing applied to a 1D Bloch decay has a number
of added advantages, particularly when applied to
half-integer quadrupolar nuclei[22] where its main
strength lies in the rapid interpretation of MAS sig-
nals. The experimental simplicity of TOP process-
ing applied to a 1D Bloch decay makes it a com-
pelling method, and it is surprising that it has not
been more widely utilitized.

3.1.2. 2D PASS

Generally, the NMR signal in a rotating sam-
ple can be manipulated into a number of desirable
forms by applying a series ofπ pulses between the
initial excitation pulse and the start of signal acqui-
sition. In the PASS experiment [19, 16], a time co-
ordinate is defined where the initial excitation pulse
is applied att = −T and signal acquisition begins
at t = 0. Between the initial excitation pulse and
signal acquisition areQ π-pulses, applied at times
−T + τ1,−T + τ2, . . . ,−T + τQ. The signal phase
at t = 0, a duration ofτQ+1 = T after the initial

excitation pulse, is given by

ΦQ(t = 0) = (−1)Q
Q∑

q=0

(−1)q
−T+τq+1∫

−T+τq

Ω(t′)dt′,

= W0




T − 2(−1)Q

Q∑

q=1

(−1)qτq





+
∑

m,0

Wmeim(χR+γ)

×




1−2(−1)Q

Q∑

q=1

(−1)qeimθq e−imθT −(−1)Qe−imθT




,

(14)

whereτ0 = 0, θT = ωRT , andθq = ωRτq.
In the PASS experiment [19, 26] the timings of

theQ π pulses are manipulated so the signal phase
at t = 0 has a form

Φpass(ǫ, t = 0) =

W0 [ 0 ] +
∑

m,0

Wmeim(χR+γ)
[

1− e−imωRǫ
]

,
(15)

where ǫ is a function of theQ π pulse timings.
Evolving forward fromt = 0 the PASS signal phase
then becomes similar to the Bloch decay MAS sig-
nal

Φpass(ǫ, t) =

W0 t +
∑

m,0

Wmeim(χR+γ)
[

eimωRt − e−imωRǫ
]

,
(16)

with the important exception thatǫ is non-zero and
can be varied independent oft. The PASS ap-
proach for obtaining the signal phase of Eq. (15)
comes from equating Eqs. (14) and (15) to obtain
the PASS equations:

θT − 2(−1)Q
Q∑

q=1

(−1)qθq = 0, (17)

and

e−imΘ =

2(−1)Q
Q∑

q=1

(−1)qeimθq e−imθT + (−1)Qe−imθT ,

(18)
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Figure 4: Application of TOP processing to a29Si NMR rotor synchronized Hahn echo signal of Clinoenstatite. Isotropic frequen-
cies are referenced to TMS. Contour levels are plotted from 5%-100% in increments of 5% of the maximum intensity.

whereΘ = ωRǫ. Levitt and coworkers[16] sug-
gested a fiveπ pulse (Q = 5) 2D PASS experiment,
of constant durationT , with θT = 2π, and obtained
the equations

2
5∑

q=1

(−1)qθq + 2π = 0, (19)

and

−2
5∑

q=1

(−1)qeimθq −1 = e−imΘ, for m = 1, 2. (20)

These equations can be solved numerically for the
π pulse timings shown in Fig. 5 and are tabulated
elsewhere[16].

The phase of Eq. (16) leads to a PASS
signal[23], when averaged over the crystallite an-
gles, of the form

Spass(ǫ, t) = eiW0t
∑

N

I(N)e−iNωR(t+ǫ). (21)

The 2D PASS signal, just like the Bloch decay
MAS signal, can be used to fill the 2D signal in a
ǫ–t coordinate system, as shown at the top of Fig. 6.

In the case of PASS, a single shear parallel to the
ǫ coordinate with a shear ratio ofκǫ = −1 followed

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Pulse sequence and timings for the fiveπ pulse con-
stant time 2D PASS experiment of Antzutkin et al.[16]. Here,
ωR is the rotor spinning frequency.
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Figure 6: Affine transformation,Aǫ , for transforming the 2D
PASS signal,S(ǫ, t), into a 2D signal that correlates isotropic
and anisotropic frequencies, consists of a shear parallel to
ǫ, giving a 2D signal with anisotropic frequencies refocused
along thet2 axis and isotropic frequencies refocused alongt1.
The green dashed line in the top figure represents the passive
affine transformation of the 2D coordinate system to create a
time coordinate,t2, along which the 2D signal is unaffected by
the isotropic frequency contributions.

by a scaling ofς(ǫ∗) = −1, as outlined in Fig. 6, and
given by





t1

t2





=





−1 0

0 1





︸      ︷︷      ︸

Sǫ∗





1 −1

0 1





︸      ︷︷      ︸

Kǫ





ǫ

t





=





−1 1

0 1









ǫ

t





,

(22)

has been the conventional approach for obtaining a
2D spectrum correlating isotropic and anisotropic
frequencies. The original acquisition digital sam-
pling rates,∆ǫ and∆t, after the single shear be-
come∆t1 = ∆ǫ = tR and∆t2 = ∆t, respectively.
In Fig. 7 is an example of the application of the
single shear to a 2D PASS29Si signal from Cli-
noenstatite as a function of the number of steps
taken in varyingǫ from zero to one full rotor pe-
riod. Only after 16 steps does the spectral width
in the anisotropic (spinning sideband) dimension
have sufficient width. The central idea of this
work is that the application of TOP processing,
that is, a double shear, can allow one to obtain a
2D spectrum with sufficient spectral width in both
the isotropic and anisotropic dimension with sig-
nificantly fewer steps in theǫ dimension. This is
simply because the application of the TOP trans-
formation to the original digital sampling rates,
∆ǫ and ∆t, yields transformed sampling rates of
∆t2 = ∆ǫ = tR and∆t1 = ∆t, respectively. Thus,
a 29Si 2D PASS experiment on Clinoenstatite only
needs one step inǫ when using the double shear
(TOP) processing approach to resolve the twoQ(2)

sites in both dimensions, compared to the 16 steps
needed with single shear (conventional) process-
ing approach. This is illustrated in Fig. 8, where
the TOP processed 2D PASS signals of Clinoen-
statite are presented as a function of the number
of steps taken in varyingǫ from zero to one full
rotor period. Close examination of the Clinoen-
statite 2D PASS spectrum reveals a third additional

8



-40

-80

-120

-160

0 -40 -8040800 -4040000

1 Step 2 Steps 4 Steps 8 Steps 16 Steps

Figure 7: Single shear processing of 2D PASS signal of Clinoenstatite. Isotropic frequencies are referenced to TMS. Contour levels are plotted from 5%-100% in increments
of 5% of the maximum intensity.
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Figure 8: Double shear (TOP) processing of 2D PASS signal of Clinoenstatite. Isotropic frequencies are referenced to TMS.
Contour levels are plotted from 5%-100% in increments of 5% of the maximum intensity.
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resonance appearing at -63.7 ppm in the isotropic
dimension due to a minor impurity of crystalline
Forsterite. A proper acquisition of this third site
only require 4 steps in the indirect dimension of
TOP-PASS, whereas, the conventional 2D PASS
experiment would still require 16 steps in the in-
direct dimension. An additional advantage of the
TOP transformation over the single shear transfor-
mation is that the spectral width required in the
indirect dimension is easily obtained from a high
speed MAS spectrum.

When the spectral width in the isotropic dimen-
sion is significantly smaller than the spectral width
of the anisotropic dimension then the TOP process-
ing can greatly reduce the number of steps required
in the ǫ dimension. In contrast, the time savings
afforded by TOP processing is less significant as
the spectral width of the isotropic dimension ap-
proaches that of the anisotropic dimension. To
highlight this point, we compare the13C 2D PASS
NMR spectra ofL-Histidine[27] processed with the
conventional single shear approach, and shown in
Fig. 9, with the13C TOP-PASS spectra, processed
with a double shear, and shown in Fig. 10. In
this example, the conventionally processed PASS
signal required 16 steps when varyingǫ to have
sufficient spectral width to prevent aliasing of the
carbonyl sideband resonances, whereas the TOP-
PASS spectrum required approximately the same
number of steps to obtain sufficient spectral width
for the full isotropic spectrum.

Finally, it is worth noting that the reason the sin-
gle shear processing approach fails when applied
to the pseudo-2D signal constructed from a Bloch
decay MAS signal is because the original digital
sampling rates,∆ǫ and∆t, after the single shear
become∆t1 = ∆ǫ = tR and∆t2 = ∆t, respectively,
and such a sampling rate alongt1, the sideband-
only coordinate, simply cannot resolve any spin-
ning sidebands inω1.

4. Summary

We have shown that the simple application of
the TOP processing approach (i.e., a double shear
affine transformation) to 2D PASS signal can sig-
nificantly reduce the number of measurements
needed in the indirect dimension. When applying
the TOP transformation to the 2D PASS signal it is
the spectral width in the “infinite speed” isotropic
dimension that determines the dwell time needed
in the indirect dimension. This can lead to signifi-
cant time savings for systems where the span of the
anisotropic lineshapes exceeds the minimum spec-
tral width required for the isotropic dimension. The
same approach can be identically applied to sig-
nals from the 2D PASS experiment designed for the
second-order broadened central transition of half-
integer quadrupolar[28, 17].
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