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Free particle in 3D

A free particle moving in 3D with no forces acting on it, that is, V(7) =

time independent Schrodinger equation is
n_, -
—2—V w () = Ey(7)
m

. 2
y (7) is stationary state eigenstate of H = —;—VZ
m

Total wave function is
G, 1) = y@e BN

For particle with momentum p = hk wave function is

YF 1) = A ei(ic'~7—wt) — ApPT/h p—iEt/h
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Free particle in 3D

In 3D momentum operator is vector operator
p= pxex +pyey +pZ€Z,

where ) ) )
ﬁx = —iha, ﬁy = —iha—y, and ﬁz = _lha_z

Kinetic energy operator in 3D is
A2 A2 )

. P p p 2 2 2 2 2

fobBe B P h(a 0% a) h

—_ L= [ — + + —
2m  2m  2m 2m \ox* 0y? 072
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Particle in Infinite 3D Well

Particle bound in infinite 3D well

0<x<L,
0 0<y<L,
V(x,v,2) = 0<z<L,

oo otherwise.

Separate variables and write
y(x,y,2) = X()Y()Z(z)

Plugging into time independent Schrédinger equation

02X(x) h? 0%Y (y) 2 0ZZ(z)

——Y(y)Z( ) = o XWZ@Q)— == = S XY )

=Ey
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Particle in Infinite 3D Well

Dividing both sides by w(x,y,z) and rearranging gives

1 0*X(x) L °Y(y) L1 0’Z(2) | .,

=0
X(x) 0x2 Y(y) 9y? Z(z) oz?
k* = 2mE/h?
Rearranging to
L #X@ _ 1 Y0 1 20
X(x) ox? Y(y) 0y? Z(z) o7? *

Introduce separation constant —k)%, and obtain uncoupled ODE for X(x)

d*X(x)
+EX(x) =0
dx? *
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Particle in Infinite 3D Well

Leaves us with PDE that can be rearranged to

1 a2Y(y) 1 3*Z(2)
Y(y) 0y? T Z() 02

2 _ 12
— K+ =k

Introduce separation constant —k§ to obtain uncoupled ODE for Y(y)

Y()

+ sz
02 =

Leaves us with uncoupled ODE for Z(z)

1 dZ@) |, 0
Z(z) dz? :
— 72 2 2
k=K +E+12.
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Particle in Infinite 3D Well

3D boundary conditions constrain normalized ODEs solutions to

[2 . / 2 . / 2 .
X(x) = L_x sinkx, Y(@) = L_y sin kyy, Z(2) = L_z sink,z

ke, ky, and k_ have discrete values given by

, where n, ny,nz—l 2,3,.

bl
I
tan
I
|N
o

Similarly, we find total energy

2.2
E = n <k2+k2+k2) K
2m 2m

2 2 2
E — h_2 n_x + n_y + n_z
T gm\ 12 L2 L2
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Degeneracy and density of states

When different states lead to the same energy we say that those states are
degenerate states.

When L, =L, =L, =L, that is, box is cube, energy expression becomes

h? 2,2, 2
E‘nx,ny,nZ - 8mL2 (nx + I’ly + nz>

We can readily find states with identical energy
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Degeneracy and density of states

Number of discrete states of an infinite well represented as histogram as
function of energy for

) ) o m o o
0 10 20 30 40 50 60 70 80 90
E [ (h*/(8mL))
e 2D

100

s .sem8 Im s s =
10 20

BE I B
30 40 50 60 70 80
E / (h*/(8mL))
e 3D

B E
100

Lonlakt b bl R h\lull|

80
E / (h*/(8mL))
P. J. Grandinetti (Chem. 4300)

90

Quantum Particle in Three Dimensions

Nov 1, 2017 9 /30



Degeneracy and density of states
Number of states in E to E + dE is g(E) dE, where g(E)

= density of states.
@ Density of states in 1D in given dE decreases with increasing E
5
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50
@ Density of states in 2D in given dE stays roughly constant with increasing E
5
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Derive expression for g(E) for particle in 1D infinite well

For particle in 1D infinite well the energy is

n =

n2h?
8ml?2

one energy state for each n

In 1D case number of states associated with given energy interval, dE, is

Rearranging energy

and calculate

Consistent with 1D energy histogram plot — density of states decreases

dn

E
gip(E) = dE

_ V8mlL’E

B h

8m 1/2
gin(E )_dE <ﬁ>

L

\/E

with inverse square root of energy.
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Derive expression for g(E) for particle in 2D infinite well
For particle in 2D infinite well the energy is

_ R (o a\_ P o 35 VSmLE
Enx’ny = Sz (nx +ny> = 8mL2n where n=/n: +ny = -

Ty
A

@ Defines circle passing through positive n;
and n, quadrant of 2D space. v/
e Taking 1/4 of circle circumference times dn

as number of states that lie in annular
region of n to n+dn

>

Calculate number of states associated with given dE in 2D as

l(27m)dn _ (27m)@ _ (””)@_£<8_m>L2
4 dE = 4 dE~ 2 dE 4 \p2

gp(E) =

Consistent with 2D energy histogram plot — density of states is

independent of energy.
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Derive expression for g(E) for particle in 3D infinite well

In 3D imagine spherical shell in 3D space of n,, and n, and n_ with radius

of
8mLE
— |2 2 2 —
n= nx+ny+nz— A

and thickness of dn associated with states in interval E + dE.
Taking 1/8 of surface area of this sphere times dn as number of states
that lie in n to n + dn we write number of states associated with a given

dE in 3D as 5
1 4zn“)dn
E)y= ———~F1—
$0B) = g —F

Substituting expressions for n and dn/dE gives

7w (8m 3/2 3
g3D(E)_Z<ﬁ> L\/E

Consistent with 3D energy histogram plot — density of states increase with
the square root of energy.
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Quantum Theory of Angular Momentum

P. J. Grandinetti (Chem. 4300) Quantum Particle in Three Dimensions



Quantum Theory of Angular Momentum
Angular momentum of particle with respect to origin is

-

L=#Fxp=—ihFxV.

Recalling procedure for expanding cross product

o e, e ¢
FXp=|x ¥ 2z
Py Py P
Operators do not commute. Be careful with order when expanding.
FAEE-SUR-S ( ANA S IN S AN IO (=
L=7xp=e, Ay P T A s X2 Ay
Dy P; Dx P x Py
~—— ~—— N——
L, L, L,
and we find
Lx = jlﬁz _ 2ﬁy’ Ly = 2’\x — _fcﬁz, LZ = fcf\y _ 5],\)(
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Quantum Theory of Angular Momentum

~ ~ A

Lx = yﬁz - 2ﬁy’ Ly = 2ﬁx - kﬁp Lz = 5\Cﬁy - yﬁx
Unlike linear momentum operators which all commute:

[ﬁx’ﬁy] =0, [ﬁy’ﬁz] =0, [ﬁz’ﬁx] =0

Not true for L,, L,, and L.

(L.L)=inl, [L.L1=inl, and [L.L]=inL,

Notice cyclic permutation of subscripts, x >y — z — x---.

Commutators tell us L, ﬁy, and L, are incompatible observables.

ALAL, >

N |

KL )1
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Quantum Theory of Angular Momentum
The total angular momentum operator is

£2_F2 , F2 4 72
Lo =L+ L + L]
It commutes with all 3 components, L, I:y, and L,

A

[L*,L]=0, [L*L]=0, [L*

=
Il
N
(]
=
—
~o
oW
ol
e
Il
(e}

@ [? commutes with I:x, I:y, and I:Z.
@ But ﬁx, ﬁy, and le don't commute with each other.
@ [2 eigenstate cannot simultaneously be eigenstate of f,x, I:y, and I:Z.

o [? eigenstate can only be eigenstate of L and L,, or L* and L, or L* and L.
@ We cannot know all 3 components of angular momentum vector in QM.

@ At best we know angular momentum vector length and one vector
component.

@ Convention is to work with eigenstates of L? and L,
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Angular momentum eigenvalues
To determine eigenvalues of L2 and iz start with

Ly =2y and Ly = uy,
where A and u represent the yet-to-be-determined eigenvalues.
Convenient to introduce related raising and lowering operators
B, =L,+il, and i =1, —i,
Similar approach taken for harmonic oscillator
If v = i+tp then izu/' = f,z(f,+w) = f,zi+w.

A A A

Recalling that [Zz,i+] =LL, - Z+LZ = hIAq_ then we have

Ly =L, -L,L)y+L,Ly,
———
(L,

o~

+]

and obtain

A

Ly'=hlw+Lopw= (h+p Loy,
——

eigenalue of v’
Effect of L, is to increase eigenvalue of L, by h.
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Angular momentum eigenvalues

Similarly show that L_ is a lowering operator—operates on eigenstate of
L, to make new eigenstate with eigenvalue lower by 7.

@ L, corresponds to z component of angular momentum,
e [? corresponds to square of total angular momentum.

° I:+ cannot create new iz eigenstate with eigenvalue greater than total
angular momentum.

@ one component of vector cannot exceed total length of vector.
So there is an eigenstate of iz with highest possible eigenvalue, v, .., and
we require
. A oS
L+Wmax = 0’ while szmax = fhl//max and L Ymax = /h//max

where £ is value to be determined.
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Angular momentum eigenvalues

i‘+wmax = O’ while i’zwmax = fhwmax and Z\‘zwmax = /hl/max

Use these equations to determine values of £ and A.
Start by applying L? to w,,,.,,

72 72,7272
L Ymax = <Lx + Ly + LZ> Ymax = ll//max'

Next we use identity

<

oy e s s
R+l2=L L, +nl =L,0 —nL
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Proof of useful identity
s 0 o s s .
2+P2=L L, +nl, =10 -#L,

Prove as follows:

Since [L,,L_1=L,L_—L_L, =2hL, we can substitute for L,L_ and
obtain first expression on the right.
One can similarly obtain second expression on the right.
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Angular momentum eigenvalues

A

L+Wmax = 0’ While Z\‘zl//max = Z’ﬂh"l/max and z‘2"I/max = /h//max

Use these equations to determine values of £ and A.

Start by applying L? to w,,,.,,

72 £2 . F2 ., 72

L Ymax = <Lx + Ly + LZ> Ymax = Al//max'
Next we use identity

ey a s
B+l}=L L, +nl =L, L -nl

<

we can write

Py = (LLy + AL, + L)y = (0+ 202 + 70%) Wi = Wi

finding that A = £(¢ + 1)h>.
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Angular momentum eigenvalues

Similarly, at the other end, the z component of the angular momentum
vector can never be longer than the total angular momentum vector length
so we have the analogous expressions:

~

L—Wmin = O’
and
szmin = l’ﬂ,hwmin’ and szmin = f(f + l)hzwmin'
As before we obtain
DPyin = (LyL_ = AL, + L) wnin = (0= £'1° + (")) Winin = AWinin»

giving A =/ (¢’ + Dh>.
Since L2y = Ay for all w we must have

CE+D) =70+,

and so the only reasonable conclusion is that ¢/ = —7.
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Angular momentum eigenvalues

Bringing all this together we know that the eigenstates of I:Z range from
—¢ for yi, to + for y,,.,, and increase in steps of i for wave functions
in between. Thus we have

izw=mhw where m=-¢,-¢+1,...,-1,¢

and

Ly =¢+ Dy

If there are N steps between m = —¢ and m = ¢ then £ = —¢ + N and
£ =NJ/2.
That is, £ much have an integer or half-integer value,

1£=0,1/2,1,3/2, ...

Notice that by using raising and lowering operators we could determine the
behavior and values of the eigenvalues of L? and L, without actually
having an explicit expression for .
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Angular momentum eigenstates
To determine the eigenstates of L2 and ﬁz we go back to

-
~

L=Fxp=-inixV

To go further we are better off working in spherical coordinates,

Nov 1, 2017
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Angular momentum eigenstates
In spherical coordinates
, =sinfcospe, +sinfsingé, +cosbé,

ég =cosfcosge, +cosfsingé, —sinbé,

N
e

é,=—singe, +cosge,
or the inverse

¢, =sinfcosge, +coshcospé,—singé,,
¢, =sinfsinge, + cosfsingé, + cos péy,
¢, =cosfe, —sinfé,,

and can express V as

1o - 1 o0

V=oe —+€0——+€¢m£.
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Angular momentum eigenstates

-
Using 7 = 7¢, we expand the angular momentum operator as

P _h)- .0 - -0 N
L=—|Fle,Xe)—+(e.Xey)— + (e, Xe,)——

i[(’ gyt e xe)gs e ¢)s1n96¢]

and since é, X ¢é, =0, €, X ¢é, = €,, and €, X é, = —¢, we obtain

L P S S
T i 17%00 ’sin6og

Substituting the expressions for Ed, and €, on the previous page we obtain

h _ 9 cos 6 cos ¢é, + cos @ sin qﬁEy —sinde, \ 5
— — e. + 6. )— — —_
- | (—singe, + cos qbey) 30 5o Py

ol
Il

1
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Angular momentum eigenstates

Collecting the ¢,, €,, and ¢, components gives

X1 Cyr

ﬁx = —ih <— sinqb% - cosd)cotH%)
L, =—in <—cos (;b% - sinqﬁcot@%)
A ., 0
LZ = —lhﬂ

Similarly one can show that

sin 6§ 00

17 = —p? [L : (sint9i

06

)+

s
sin® @ 0¢?

|
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Angular momentum eigenstates
To determine the eigenfunction of both L2 and I:Z we start with
70V, (0:9)
i 0P
Using separation of variables we can write w(0, ¢) as
v (0, 9) = O(0)D(¢)
Substituting into PDE and dividing both sides by w (8, ¢)
dd(¢) _ . : do(¢) _ .
———= =im®(¢p) which rearranges to ———= = imd¢
dp © o($)

and integrates to

Ly, ¢) = =mhy (0, )

D(¢) = Ae™?
Since we require wave functions to be single valued we must have
D(¢) = D(¢p+21) or Ae™P = Aem T

which leads to the constraint

oM — | requiring m = 0, +1, +2, ...
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Angular momentum eigenstates

Next we consider
LAy (0, ¢) = W24 + Dy (0, §)

Substituting the expression for L2 gives

sin 6 00 00/ " gin2 g 0¢p?
Substituting w (8, ¢) = B(0)D(¢) into this PDE and dividing both sides by
v (0, 9)

21(199)% <sin 0_@@(9)) + (¢ + Dsin® 0 = —

—h2[ 1 o (smeg>+ 1 0_2] w(0, ) = K22 + Dy (0, ¢).

1 0’®(¢) _ ,
— =m
D(p) 0¢?

2

a0

Identify m? as separation constant for this PDE.
We recognize this PDE as having the spherical harmonic wave solutions

20 + 1)(& —m)! .
Y, (0, ) = (—1)m\/( 4:(;:_ m);n) P (cos 0)e™®
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