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Free particle in 3D

A free particle moving in 3D with no forces acting on it, that is, V(r⃗) = 0,
time independent Schrödinger equation is

− ℏ2

2m
∇2𝜓(r⃗) = E𝜓(r⃗)

𝜓(r⃗) is stationary state eigenstate of ̂ = − ℏ2

2m
∇2

Total wave function is
Ψ(r⃗, t) = 𝜓(r⃗)e−iEt∕ℏ

For particle with momentum p⃗ = ℏk⃗ wave function is

Ψ(r⃗, t) = Aei(k⃗⋅r⃗−𝜔t) = Aeip⃗⋅r⃗∕ℏe−iEt∕ℏ
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Free particle in 3D

In 3D momentum operator is vector operator

⃗̂p = p̂xe⃗x + p̂ye⃗y + p̂ze⃗z,

where
p̂x = −iℏ 𝜕

𝜕x
, p̂y = −iℏ 𝜕

𝜕y
, and p̂z = −iℏ 𝜕

𝜕z

Kinetic energy operator in 3D is

K̂ =
p̂2

x
2m

+
p̂2

y

2m
+

p̂2
z

2m
= − ℏ2

2m

(
𝜕2

𝜕x2 + 𝜕2

𝜕y2 + 𝜕2

𝜕z2

)
= − ℏ2

2m
∇2
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Particle in Infinite 3D Well
Particle bound in infinite 3D well

V(x, y, z) =

⎧⎪⎪⎨⎪⎪⎩

0 ≤ x ≤ Lx,
0 0 ≤ y ≤ Ly,

0 ≤ z ≤ Lz,

∞ otherwise.

Separate variables and write

𝜓(x, y, z) = X(x)Y(y)Z(z)

Plugging into time independent Schrödinger equation

− ℏ2

2m
Y(y)Z(z)𝜕

2X(x)
𝜕x2 − ℏ2

2m
X(x)Z(z)

𝜕2Y(y)
𝜕y2 − ℏ2

2m
X(x)Y(y)𝜕

2Z(z)
𝜕z2 = E𝜓

P. J. Grandinetti (Chem. 4300) Quantum Particle in Three Dimensions Nov 1, 2017 4 / 30



Particle in Infinite 3D Well
Dividing both sides by 𝜓(x, y, z) and rearranging gives

1
X(x)

𝜕2X(x)
𝜕x2 + 1

Y(y)
𝜕2Y(y)
𝜕y2 + 1

Z(z)
𝜕2Z(z)
𝜕z2 + k2 = 0

k2 = 2mE∕ℏ2

Rearranging to

1
X(x)

𝜕2X(x)
𝜕x2 = − 1

Y(y)
𝜕2Y(y)
𝜕y2 − 1

Z(z)
𝜕2Z(z)
𝜕z2 − k2 = −k2

x

Introduce separation constant −k2
x , and obtain uncoupled ODE for X(x)

d2X(x)
dx2 + k2

xX(x) = 0
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Particle in Infinite 3D Well
Leaves us with PDE that can be rearranged to

1
Y(y)

𝜕2Y(y)
𝜕y2 = − 1

Z(z)
𝜕2Z(z)
𝜕z2 − k2 + k2

x = −k2
y

Introduce separation constant −k2
y to obtain uncoupled ODE for Y(y)

d2Y(y)
dy2 + k2

yY(y) = 0

Leaves us with uncoupled ODE for Z(z)

1
Z(z)

d2Z(z)
dz2 + k2

z = 0

k = k2
x + k2

y + k2
z .
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Particle in Infinite 3D Well
3D boundary conditions constrain normalized ODEs solutions to

X(x) =
√

2
Lx

sin kxx, Y(y) =

√
2
Ly

sin kyy, Z(z) =

√
2
Lz

sin kzz

kx, ky, and kz have discrete values given by

kx =
nx𝜋
Lx

, ky =
ny𝜋
Ly

, kz =
nz𝜋
Lz

, where nx, ny, nz = 1, 2, 3,…

Similarly, we find total energy

E = ℏ2

2m

(
k2

x + k2
y + k2

z

)
= ℏ2k2

2m

becomes

Enx,ny,nz
= h2

8m

(
n2

x

L2
x
+

n2
y

L2
y
+

n2
z

L2
z

)
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Degeneracy and density of states

When different states lead to the same energy we say that those states are
degenerate states.

When Lx = Ly = Lz = L, that is, box is cube, energy expression becomes

Enx,ny,nz
= h2

8mL2

(
n2

x + n2
y + n2

z

)

We can readily find states with identical energy

E2,1,1 = E1,2,1 = E1,1,2 = 6h2

8mL2
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Degeneracy and density of states
Number of discrete states of an infinite well represented as histogram as
function of energy for

1D

100 20 30 40 50 60 70 80 90 100

C
ou

nt

0

5

2D

100 20 30 40 50 60 70 80 90 100

C
ou

nt

0

5

3D

100 20 30 40 50 60 70 80 90 100

C
ou

nt

0

5

10

15

P. J. Grandinetti (Chem. 4300) Quantum Particle in Three Dimensions Nov 1, 2017 9 / 30



Degeneracy and density of states
Number of states in E to E + dE is g(E) dE, where g(E) ≡ density of states.

Density of states in 1D in given dE decreases with increasing E
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Derive expression for g(E) for particle in 1D infinite well
For particle in 1D infinite well the energy is

En = n2h2

8mL2 one energy state for each n

In 1D case number of states associated with given energy interval, dE, is

g1D(E) =
dn
dE

Rearranging energy

n =
√

8mL2E
h

and calculate

g1D(E) =
dn
dE

= 1
2

(8m
h2

)1∕2 L√
E

Consistent with 1D energy histogram plot – density of states decreases
with inverse square root of energy.
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Derive expression for g(E) for particle in 2D infinite well
For particle in 2D infinite well the energy is

Enx,ny
= h2

8mL2

(
n2

x + n2
y

)
= h2

8mL2 n2 where n =
√

n2
x + n2

y =
√

8mLE
h

Defines circle passing through positive n1
and n2 quadrant of 2D space.
Taking 1/4 of circle circumference times dn
as number of states that lie in annular
region of n to n + dn

Calculate number of states associated with given dE in 2D as

g2D(E) =
1
4
(2𝜋n)dn

dE
= (2𝜋n)

4
dn
dE

= (𝜋n)
2

dn
dE

= 𝜋
4

(8m
h2

)
L2

Consistent with 2D energy histogram plot – density of states is
independent of energy.
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Derive expression for g(E) for particle in 3D infinite well
In 3D imagine spherical shell in 3D space of nx, and ny, and nz with radius
of

n =
√

n2
x + n2

y + n2
z =

√
8mLE
h

and thickness of dn associated with states in interval E + dE.
Taking 1/8 of surface area of this sphere times dn as number of states
that lie in n to n + dn we write number of states associated with a given
dE in 3D as

g3D(E) =
1
8
(4𝜋n2)dn

dE
Substituting expressions for n and dn∕dE gives

g3D(E) =
𝜋
4

(8m
h2

)3∕2
L3
√

E

Consistent with 3D energy histogram plot – density of states increase with
the square root of energy.
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Quantum Theory of Angular Momentum
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Quantum Theory of Angular Momentum
Angular momentum of particle with respect to origin is

⃗̂L = ⃗̂r × ⃗̂p = −iℏ⃗̂r × ∇⃗.

Recalling procedure for expanding cross product

⃗̂r × ⃗̂p =
|||||||

e⃗x e⃗y e⃗z
x̂ ŷ ẑ
p̂x p̂y p̂z

|||||||
Operators do not commute. Be careful with order when expanding.

⃗̂L = ⃗̂r × ⃗̂p = e⃗x

||||| ŷ ẑ
p̂y p̂z

|||||
⏟⏞⏞⏟⏞⏞⏟

Lx

−e⃗y

||||| x̂ ẑ
p̂x p̂z

|||||
⏟⏞⏞⏟⏞⏞⏟

Ly

+e⃗z

||||| x̂ ŷ
p̂x p̂y

|||||
⏟⏞⏞⏟⏞⏞⏟

Lz

and we find

L̂x = ŷp̂z − ẑp̂y, L̂y = ẑp̂x − x̂p̂z, L̂z = x̂p̂y − ŷp̂x
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Quantum Theory of Angular Momentum

L̂x = ŷp̂z − ẑp̂y, L̂y = ẑp̂x − x̂p̂z, L̂z = x̂p̂y − ŷp̂x

Unlike linear momentum operators which all commute:

[p̂x, p̂y] = 0, [p̂y, p̂z] = 0, [p̂z, p̂x] = 0

Not true for L̂x, L̂y, and L̂z.

[L̂x, L̂y] = iℏL̂z, [L̂y, L̂z] = iℏL̂x, and [L̂z, L̂x] = iℏL̂y.

Notice cyclic permutation of subscripts, x → y → z → x⋯.
Commutators tell us L̂x, L̂y, and L̂z are incompatible observables.

ΔLxΔLy ≥ ℏ
2
|⟨Lz⟩|.
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Quantum Theory of Angular Momentum
The total angular momentum operator is

L̂2 = L̂2
x + L̂2

y + L̂2
z

It commutes with all 3 components, L̂x, L̂y, and L̂z

[L̂2, L̂x] = 0, [L̂2, L̂y] = 0, [L̂2, L̂z] = 0, or [L̂2, ⃗̂L] = 0

L̂2 commutes with L̂x, L̂y, and L̂z.

But L̂x, L̂y, and L̂z don’t commute with each other.

L̂2 eigenstate cannot simultaneously be eigenstate of L̂x, L̂y, and L̂z.

L̂2 eigenstate can only be eigenstate of L̂2 and L̂x, or L̂2 and L̂y, or L̂2 and L̂z.
We cannot know all 3 components of angular momentum vector in QM.
At best we know angular momentum vector length and one vector
component.
Convention is to work with eigenstates of L̂2 and L̂z
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Angular momentum eigenvalues
To determine eigenvalues of L̂2 and L̂z start with

L̂2𝜓 = 𝜆𝜓 and L̂z𝜓 = 𝜇𝜓,

where 𝜆 and 𝜇 represent the yet-to-be-determined eigenvalues.
Convenient to introduce related raising and lowering operators

L̂+ = L̂x + iL̂y and L̂− = L̂x − iL̂y

Similar approach taken for harmonic oscillator
If 𝜓 ′ = L̂+𝜓 then L̂z𝜓

′ = L̂z(L̂+𝜓) = L̂zL̂+𝜓.

Recalling that [L̂z, L̂+] = L̂zL̂+ − L̂+L̂z = ℏL̂+ then we have

L̂z𝜓
′ = (L̂zL̂+ − L̂+L̂z)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
[L̂z,L̂+]

𝜓 + L̂+L̂z𝜓,

and obtain
L̂z𝜓

′ = ℏL̂+𝜓 + L̂+𝜇𝜓 = (ℏ + 𝜇)
⏟⏟⏟

eigenalue of 𝜓 ′

L̂+𝜓,

Effect of L̂+ is to increase eigenvalue of L̂z by ℏ.
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Angular momentum eigenvalues
Similarly show that L̂− is a lowering operator—operates on eigenstate of
L̂z to make new eigenstate with eigenvalue lower by ℏ.

L̂z corresponds to z component of angular momentum,

L̂2 corresponds to square of total angular momentum.

L̂+ cannot create new L̂z eigenstate with eigenvalue greater than total
angular momentum.

one component of vector cannot exceed total length of vector.

So there is an eigenstate of L̂z with highest possible eigenvalue, 𝜓max, and
we require

L̂+𝜓max = 0, while L̂z𝜓max = 𝓁ℏ𝜓max and L̂2𝜓max = 𝜆𝜓max

where 𝓁 is value to be determined.
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Angular momentum eigenvalues

L̂+𝜓max = 0, while L̂z𝜓max = 𝓁ℏ𝜓max and L̂2𝜓max = 𝜆𝜓max

Use these equations to determine values of 𝓁 and 𝜆.

Start by applying L̂2 to 𝜓max,

L̂2𝜓max =
(

L̂2
x + L̂2

y + L̂2
z

)
𝜓max = 𝜆𝜓max.

Next we use identity

L̂2
x + L̂2

y = L̂−L̂+ + ℏL̂z = L̂+L̂− − ℏL̂z
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Proof of useful identity

L̂2
x + L̂2

y = L̂−L̂+ + ℏL̂z = L̂+L̂− − ℏL̂z,

Prove as follows:

L̂2
x + L̂2

y =

(
L̂+ + L̂−

2

)(
L̂+ + L̂−

2

)
+

(
L̂+ − L̂−

2i

)(
L̂+ − L̂−

2i

)

=

(
L̂2
+ + L̂−L̂+ + L̂+L̂− + L̂2

−
)

4
+

(
L̂2
+ − L̂−L̂+ − L̂+L̂− + L̂2

−
)

−4
= 1

2
(
L̂−L̂+ + L̂+L̂−

)
.

Since [L̂+, L̂−] = L̂+L̂− − L̂−L̂+ = 2ℏL̂z we can substitute for L̂+L̂− and
obtain first expression on the right.
One can similarly obtain second expression on the right.
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Angular momentum eigenvalues

L̂+𝜓max = 0, while L̂z𝜓max = 𝓁ℏ𝜓max and L̂2𝜓max = 𝜆𝜓max

Use these equations to determine values of 𝓁 and 𝜆.
Start by applying L̂2 to 𝜓max,

L̂2𝜓max =
(

L̂2
x + L̂2

y + L̂2
z

)
𝜓max = 𝜆𝜓max.

Next we use identity

L̂2
x + L̂2

y = L̂−L̂+ + ℏL̂z = L̂+L̂− − ℏL̂z

we can write

L̂2𝜓max =
(
L̂−L̂+ + ℏL̂z + L̂2

z
)
𝜓max =

(
0 + 𝓁ℏ2 + 𝓁2ℏ2)𝜓max = 𝜆𝜓max,

finding that 𝜆 = 𝓁(𝓁 + 1)ℏ2.
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Angular momentum eigenvalues
Similarly, at the other end, the z component of the angular momentum
vector can never be longer than the total angular momentum vector length
so we have the analogous expressions:

L̂−𝜓min = 0,

and
L̂z𝜓min = 𝓁′ℏ𝜓min, and L̂2𝜓min = 𝓁(𝓁 + 1)ℏ2𝜓min.

As before we obtain

L̂2𝜓min =
(
L̂+L̂− − ℏL̂z + L̂2

z
)
𝜓min =

(
0 − 𝓁′ℏ2 + (𝓁′ℏ)2

)
𝜓min = 𝜆𝜓min,

giving 𝜆 = 𝓁′(𝓁′ + 1)ℏ2.
Since L̂2𝜓 = 𝜆𝜓 for all 𝜓 we must have

𝓁(𝓁 + 1) = 𝓁′(𝓁′ + 1),

and so the only reasonable conclusion is that 𝓁′ = −𝓁.
P. J. Grandinetti (Chem. 4300) Quantum Particle in Three Dimensions Nov 1, 2017 23 / 30



Angular momentum eigenvalues
Bringing all this together we know that the eigenstates of L̂z range from
−𝓁 for 𝜓min to +𝓁 for 𝜓max, and increase in steps of ℏ for wave functions
in between. Thus we have

L̂z𝜓 = mℏ𝜓 where m = −𝓁,−𝓁 + 1,… ,𝓁 − 1,𝓁

and
L̂2𝜓 = 𝓁(𝓁 + 1)𝜓

If there are N steps between m = −𝓁 and m = 𝓁 then 𝓁 = −𝓁 + N and
𝓁 = N∕2.
That is, 𝓁 much have an integer or half-integer value,

𝓁 = 0, 1∕2, 1, 3∕2, … .

Notice that by using raising and lowering operators we could determine the
behavior and values of the eigenvalues of L̂2 and L̂z without actually
having an explicit expression for 𝜓 .
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Angular momentum eigenstates
To determine the eigenstates of L̂2 and L̂z we go back to

⃗̂L = ⃗̂r × ⃗̂p = −iℏ ⃗̂r × ∇⃗

To go further we are better off working in spherical coordinates,

z

y

x
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Angular momentum eigenstates
In spherical coordinates

e⃗r = sin 𝜃 cos𝜙 êx + sin 𝜃 sin𝜙 e⃗y + cos 𝜃 e⃗z,

e⃗𝜃 = cos 𝜃 cos𝜙 êx + cos 𝜃 sin𝜙 e⃗y − sin 𝜃 e⃗z,

e⃗𝜙 = − sin𝜙 êx + cos𝜙 e⃗y,

or the inverse

e⃗x = sin 𝜃 cos𝜙 êr + cos 𝜃 cos𝜙 e⃗𝜃 − sin𝜙 e⃗𝜙,
e⃗y = sin 𝜃 sin𝜙 êr + cos 𝜃 sin𝜙 e⃗𝜃 + cos𝜙 e⃗𝜙,

e⃗z = cos 𝜃 êr − sin 𝜃 e⃗𝜃,

and can express ∇⃗ as

∇⃗ = e⃗r
𝜕
𝜕r

+ e⃗𝜃
1
r
𝜕
𝜕𝜃

+ e⃗𝜙
1

r sin 𝜃
𝜕
𝜕𝜙

.
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Angular momentum eigenstates
Using ⃗̂r = r̂e⃗r we expand the angular momentum operator as

⃗̂L = ℏ
i

[
r̂(e⃗r × e⃗r)

𝜕
𝜕r

+ (e⃗r × e⃗𝜃)
𝜕
𝜕𝜃

+ (e⃗r × e⃗𝜙)
1

sin 𝜃
𝜕
𝜕𝜙

]

and since e⃗r × e⃗r = 0, e⃗r × e⃗𝜃 = e⃗𝜙, and e⃗r × e⃗𝜙 = −e⃗𝜃 we obtain

⃗̂L = ℏ
i

[
e⃗𝜙

𝜕
𝜕𝜃

− e⃗𝜃
1

sin 𝜃
𝜕
𝜕𝜙

]

Substituting the expressions for e⃗𝜙 and e⃗𝜃 on the previous page we obtain

⃗̂L = ℏ
i

[
(− sin𝜙êx + cos𝜙êy)

𝜕
𝜕𝜃

−

(
cos 𝜃 cos𝜙e⃗x + cos 𝜃 sin𝜙e⃗y − sin 𝜃e⃗z

sin 𝜃

)
𝜕
𝜕𝜙

]
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Angular momentum eigenstates
Collecting the e⃗x, e⃗y, and e⃗z components gives

L̂x = −iℏ
(
− sin𝜙 𝜕

𝜕𝜃
− cos𝜙 cot 𝜃 𝜕

𝜕𝜙

)

L̂y = −iℏ
(
−cos𝜙 𝜕

𝜕𝜃
− sin𝜙 cot 𝜃 𝜕

𝜕𝜙

)
L̂z = −iℏ 𝜕

𝜕𝜙

Similarly one can show that

L̂2 = −ℏ2
[

1
sin 𝜃

𝜕
𝜕𝜃

(
sin 𝜃 𝜕

𝜕𝜃

)
+ 1

sin2 𝜃
𝜕2

𝜕𝜙2

]
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Angular momentum eigenstates
To determine the eigenfunction of both L̂2 and L̂z we start with

L̂z𝜓(𝜃, 𝜙) = ℏ
i
𝜕𝜓𝓁,m(𝜃, 𝜙)

𝜕𝜙
= mℏ𝜓(𝜃, 𝜙)

Using separation of variables we can write 𝜓(𝜃, 𝜙) as
𝜓(𝜃, 𝜙) = Θ(𝜃)Φ(𝜙)

Substituting into PDE and dividing both sides by 𝜓(𝜃, 𝜙)
dΦ(𝜙)

d𝜙
= imΦ(𝜙) which rearranges to dΦ(𝜙)

Φ(𝜙)
= imd𝜙

and integrates to
Φ(𝜙) = Aeim𝜙

Since we require wave functions to be single valued we must have
Φ(𝜙) = Φ(𝜙 + 2𝜋) or Aeim𝜙 = Aeim(𝜙+2𝜋)

which leads to the constraint
eim2𝜋 = 1 requiring m = 0,±1,±2,…
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Angular momentum eigenstates
Next we consider

L̂2𝜓(𝜃, 𝜙) = ℏ2𝓁(𝓁 + 1)𝜓(𝜃, 𝜙)
Substituting the expression for L̂2 gives

−ℏ2
[

1
sin 𝜃

𝜕
𝜕𝜃

(
sin 𝜃 𝜕

𝜕𝜃

)
+ 1

sin2 𝜃
𝜕2

𝜕𝜙2

]
𝜓(𝜃, 𝜙) = ℏ2𝓁(𝓁 + 1)𝜓(𝜃, 𝜙).

Substituting 𝜓(𝜃, 𝜙) = Θ(𝜃)Φ(𝜙) into this PDE and dividing both sides by
𝜓(𝜃, 𝜙)

sin 𝜃
Θ(𝜃)

𝜕
𝜕𝜃

(
sin 𝜃 𝜕Θ(𝜃)

𝜕𝜃

)
+ 𝓁(𝓁 + 1) sin2 𝜃 = − 1

Φ(𝜙)
𝜕2Φ(𝜙)
𝜕𝜙2 = m2,

Identify m2 as separation constant for this PDE.
We recognize this PDE as having the spherical harmonic wave solutions

Y𝓁,m(𝜃, 𝜙) = (−1)m
√

(2𝓁 + 1)(𝓁 − m)!
4𝜋(𝓁 + m)!

Pm
𝓁 (cos 𝜃)e

im𝜙
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