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Energetically accessible degrees of freedom
In kinetic theory of gases we consider translational motion of monatomic gas and learned
that temperature is a measure of average translational kinetic energy,

pV = n2
3

NA𝜖k = nRT or 𝜖k =
3
2

kBT

What about a polyatomic gas where there is translational, rotational, and vibrational motion?

Definition
Equipartition of energy theorem says that energy is distributed, on average, equally among all
energetically accessible degrees of freedom, such as those associated with molecular
translations, molecular rotations, bond vibrations, and electronic motion.

More specifically, it says there will be an average thermal energy of 1
2 kBT associated with each

coordinate that shows up squared in the total energy expression.
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Monoatomic gas
Simplest model of monoatomic gas only considers translational motion.

Translational Energy
For each particle (atom) the energy is

Etrans =
p2

x
2m

+
p2

y

2m
+

p2
z

2m

3 independent coordinates, px, py, and pz, appear squared. According to equipartition of
energy theorem the average thermal energy of a monoatomic gas atom is

𝜖trans = 3
(1

2
kBT

)
= 3

2
kBT

or internal molar energy of

Um = 3
2

RT monoatomic gas
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Diatomic gas molecules

For diatomic gas molecule total energy expression will include same contribution for
translational motion as monoatomic gas except coordinates are associated with center of
mass of molecule.
In addition to translation, energy expression for diatomic molecules will include additional
contributions from internal motions such as rotational and vibrational motion.

RotationalTranslational Vibrational
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Diatomic gas molecules
Rotational Energy
For a diatomic molecule rotational energy is

Erot =
1
2

Ib𝜔
2
b +

1
2

Ic𝜔
2
c

Ib and Ic are principal moments of inertia and 𝜔b and 𝜔c are components of angular velocity
vector. Recall: diatomic molecule is linear so Ia = 0.

Vibrational Energy
For a diatomic molecule vibrational energy (modeled as harmonic oscillator) is

Evib =
p2

r
2mr

⏟⏟⏟
Kinetic

+ 1
2
𝜅f(r − re)2

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Potential
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Diatomic gas molecules
Applying the equipartition of energy theorem for a diatomic we count

3 for p2
x , p2

y , p2
z ← translational

+2 for 𝜔2
b, 𝜔

2
c ← rotational

+2 for p2
r , r2 ← vibrational

7 ← total

Average thermal energy of gas atom is

𝜖 = 7
(1

2
kBT

)
= 7

2
kBT

For diatomic gas this predicts internal molar energy of

Um = 7
2

RT diatomic gas
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Linear polyatomic gas molecules
For a polyatomic gas molecule containing X atoms we will consider two cases: linear and
non-linear molecules. In the case of linear molecules we count

3 for p2
x , p2

y , p2
z ← translational

+2 for 𝜔2
b, 𝜔

2
c ← rotational

+2(3X − 5) ← vibrational
6X − 5 ← total

Average thermal energy of linear polyatomic gas molecule is

𝜖 = (6X − 5)
(1

2
kBT

)
For linear polyatomic gas molecule this predicts internal molar energy of

Um = (6X − 5)
(1

2
RT

)
, linear polyatomic gas
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Non-linear polyatomic gas molecules
In the case of non-linear molecule containing X atoms we count

3 for p2
x , p2

y , p2
z ← translational

+3 for 𝜔2
a, 𝜔

2
b, 𝜔

2
c ← rotational

+2(3X − 6) ← vibrational
6X − 6 ← total

Average thermal energy of non-linear polyatomic gas molecule is

𝜖 = (6X − 6)
(1

2
kBT

)
For non-linear polyatomic gas molecule this predicts internal molar energy of

Um = 3(X − 1)RT , non-linear polyatomic gas
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Heat capacity of a gas
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Heat capacity of a gas

Molar heat capacity at constant volume is given by

CV ,m =
(
𝜕Um
𝜕T

)
V

How does equipartition theorem prediction do predicting heat capacities?
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Heat capacity of a monoatomic gas

For monoatomic gas equipartition theorem predicts Um = 3
2

RT.

CV ,m =
(
𝜕Um
𝜕T

)
V
= 3

2
R = 12.47 J/(mol⋅K)

and experimental heat capacities for a few monoatomic gases are ...

Gas CV ,m (measured) / J/(mol⋅K)
He 12.47
Ne 12.47
Ar 12.47

Impressive agreement!!
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Heat capacity of a diatomic gas
For diatomic gas the equipartition theorem predicts Um = 7

2
RT

CV ,m =
(
𝜕Um
𝜕T

)
V
= 7

2
R = 29.10 J/(mol⋅K)

Experimental heat capacities for a few diatomic gases are ...

Gas CV ,m (measured) / J/(mol⋅K)
H2 20.50
N2 20.50
O2 21.50

Measured heat capacity is consistently lower than prediction by value close to
R ≈ 8.31446 J/(mol⋅K).
What went wrong?
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Heat capacity of a gas
Equipartition theorem assumes thermal energy is distributed equally among all types of motion.

E

translation rotation vibration

Thermal energy 
distributed equally

It did not escape attention of Boltzmann, Maxwell, and others that equipartition theorem could give
right answer if vibrational or rotation contributions to heat capacity were dropped. Boltzmann thought
somehow energy couldn’t transfer into molecular vibrations, but could not find suitable explanation.

Um = 3
2

RT
⏟⏟⏟

trans

+ RT
⏟⏟⏟

rot

+

�
�
�
��>

0
(6 − 5)RT
⏟⏞⏞⏟⏞⏞⏟

vib

= 5
2

RT = 20.79 J/(mol⋅K)

Gas CV ,m (measured) / J/(mol⋅K)
H2 20.50
N2 20.50
O2 21.50
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Heat capacity of a gas
Quantum Effects

In quantum mechanics molecules can only be found in discrete energy states.

Spacing between energy levels depends on type of motion: ΔEtrans < ΔErot < ΔEvib

Spacings between vibrational energy levels, ΔEvib, exceeds kBT at room temperature.

E

translation rotation vibration

Thermal energy 
distributed equally

Thermal energy at room temperature is not high enough to excite molecular vibrations.

With no ability to excite diatomic or polyatomic molecule vibrations, gas has lower heat
capacity than predicted—greater temperature increase for fixed amount of heat.
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Heat capacity of a gas
Quantum Effects

At even lower temperatures we can lose rotational motion contribution to heat capacity.
Quantum effects lead to step-like heat capacity for gases as a function of temperature.

heat capacity of hydrogen gas, H2
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Heat capacity of a solid
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Heat capacity of a solid
We can use equipartition of energy theorem to predict heat capacity of solids.

Unlike situation in gas phase, in solid phase we expect no translational motion.

Let’s also assume no rotational motion—may not be good assumption for molecular solids.

Leaves only vibrational motion as the primary sink for thermal energy.

Each atom in solid has vibrational energy motion in 3 dimensions
giving 3 kinetic energy contributions and 3 potential energy
contributions—each of which involve a squared coordinate.

Equipartition of energy predicts average thermal energy per atom:

𝜖 = 6
(1

2
kBT

)
For 1 mole of atoms in solid this predicts internal energy:

Um = 3RT
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Dulong and Petit rule for the heat capacity of a solid
Given Um = 3RT we obtain CV ,m =

(
𝜕Um
𝜕T

)
V
= 3R ≈ 25 J/(mol⋅K), Dulong and Petit rule.

Quantum effects cause the heat capacities of solids to
decrease with decreasing temperature.

Why do different materials reach Dulong-Petit limit at
different temperatures?
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Heat capacity of a solid

CV ,m =
(
𝜕Um
𝜕T

)
V
= 3R ≈ 25 J/(mol⋅K)

Name Cp/J/(mol⋅K) Name Cp/J/(mol⋅K)
Aluminum 24.20 Platinum 25.86
Antimony 25.23 Potassium 29.600
Arsenic 24.64 Praseodymium 27.20
Barium 28.07 Rhenium 25.48

Beryllium 16.443 Rhodium 24.98
Bismuth 25.52 Rubidium 31.060
Cadmium 26.020 Ruthenium 24.06
Calcium 25.929 Samarium 29.54

Carbon (graphite) 8.517 Scandium 25.52
Cerium 26.94 Selenium 25.363
Cesium 32.210 Silicon 19.99

Chromium 23.35 Silver 25.350
Cobalt 24.81 Sodium 28.230
Copper 24.440 Strontium 26.79
Gallium 26.03 Sulfur (rhombic) 22.70

Germanium 23.222 Tantalum 25.36
Gold 25.418 Tellurium 25.73

Iridium 25.10 Terbium 28.91
Iron 25.10 Thallium 26.32
Lead 26.84 Thorium 27.32

Lithium 24.860 Thulium 27.03
Magnesium 24.869 Tin (white) 26.99
Manganese 26.32 Titanium 25.060

Mercury 27.983 Tungsten 24.27
Molybdenum 24.06 Uranium 27.665
Neodymium 27.45 Vanadium 24.89

Nickel 26.07 Ytterbium 26.74
Niobium 24.60 Yttrium 26.53

Palladium 25.98 Zinc 25.390
Zirconium 25.36
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