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Recent experimental developments of high-resolution NMR in solids (for example, double 
rotation and dynamic-angle spinning) address the reduction of second-order line 
broadening effects, particularly in systems involving quadrupolar nuclei such as 23Na, “0, 
27A1 and 14N. However, some aspects of the theoretical description of these systems 
havd not been clearly understood; in particular, the various procedures available to truncate 
the interactions give incompatible results. We present a general framework, based on 
static perturbative methods, which provides a natural procedure to derive the correct 
Hamiltonian for higher-order effects in irreducible tensor form. Applications of this 
method to coherent averaging techniques (sample motion or radio-frequency irradiation) are 
described and compared to previous treatments based on average Hamiltonian theory. 

I. INTRODUCTION 

The importance of NMR stands in its ability to pro- 
vide physicochemical information on a sample through the 
measurement of internal nuclear spin interactions. How- 
ever, these interactions are not observed alone but in con- 
junction with the Zeeman interaction, which truncates 
them. Truncation procedures are well known from the 
early days of quantum mechanics and have found straight- 
forward and widespread applications in NMR.*‘* 

One of the consequences of truncation is the anisot- 
ropy effects in the NMR of solids, namely, the dependence 
of the spectrum on the orientation of the crystal in the 
magnetic field. l-3 A considerable amount of work has been 
devoted to devising experimental techniques that suppress 
these anisotropy effects, which typically cause broadening 
of the resonances in polycrystalline and amorphous sam- 
ples to the extent that resolution (and thus information 
content) is lost.2*3 These developments were first initiated 
by Andrew and Lowe in 1958 with the magic-angle spin- 
ning (MAS) technique.415 Important landmarks in the 
stream of improvements, due to Waugh and co-workers, 
were the WAHUHA sequence, and the introduction of 
average Hamiltonian theory (AHT) as the main tool to 
describe the effect of t ime-dependent interactions.677 More 
refinements have been added recently with the double ro- 
tation (DOR) (Ref. 8) and dynamic-angle spinning 
(DAS) (Refs. 9 and 10) methods. As these techniques 
spread to many research groups, the connected concepts of 
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irreducible tensors and AHT (Refs. 11 and 12) have mod- 
ified the way NMR spectroscopists envision some theoret- 
ical aspects in their field. Irreducible tensors can be very 
useful in simplifying calculations, and also for providing a 
more intuitive understanding of the coherent averaging 
processes (which are based on combinations of rotations). 
At the same time, and because of its natural formulation in 
terms of irreducible tensor expressions, AHT has been 
gradually applied to almost every kind of situation, some- 
times abusively. 

Many authors have pointed out that AHT, at variance 
with other theories, cannot properly describe some exper- 
imental results. In general, such situations seem most likely 
to be found when the effects of second- and higher-order 
truncated interactions are not negligible. The long-time be- 
havior of a spin system under continuous or pulsed irradi- 
ation is a well-known example that has stirred some con- 
troversy in the last decade as to the correct theoretical tool 
to describe it. The time evolution is eventually controlled 
by higher-order effects due to nonsecular terms. The vari- 
ous fundamental questions that arise when dealing with 
this problem have been reviewed recently.13 

Another case of discrepancies arises in the coherent 
averaging of the anisotropies due to second-order effects, 
for instance, when a quadrupolar coupling is not negligible 
compared to the Zeeman interaction.14 Although such sit- 
uations have been explored for many decades, they have 
been a source of confusion. Fortuitously, these misconcep- 
tions have yielded only slight discrepancies between theory 
and experiment. However, the recent development of spe- 
cific methods such as DAS and DOR, which are engi- 
neered to reduce second-order effects, mandates a clarifi- 
cation of the associated theoretical aspects. 
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Most of the difficulties found in the literature can be 
traced back to the procedure used to truncate the quadru- 
polar interaction by the Zeeman field when the sample is 
static: Many authors convert the interaction to the rotating 
frame, where it becomes time-dependent, and then apply 
AHT to obtain the truncated Hamiltonian in the rotating 
frame.‘“17 In second order, the resulting interaction con- 
tains off-diagonal elements with respect to the Zeeman in- 
teraction that happen to vanish through a second trunca- 
tion by the first-order perturbation Hamiltonian.14 
However, if the sample rotates fast enough at the magic 
angle to average out the first-order term, two contradictory 
predictions for the second-order broadening arise, depend- 
ing on whether the nonsecular terms in the second-order 
expansion are retained or discarded. At variance with this 
description, an analysis based on static perturbation theory 
(SPT) does not predict such effects.” Other minor dis- 
agreements between the SPT and AHT approaches may 
also be expected and indeed have been reported, but no 
arguments were given to explain them.14 

To highlight the effect of these nonsecular terms in 
AHT, we have performed a set of simulations for the NMR 
transition of a single-crystal sample, containing equivalent 
uncoupled quadrupolar nuclei of spin $, and spinning 
around the magic angle at various speeds. The computa- 
tional details are given in the Appendix. The spectra in 
Fig. 1 were calculated using three different methods: a full 
diagonalization procedure (referred to as “exact”) and 
two perturbation methods carried to second order (SPT 
and AHT) . The results clearly show the failure of AHT to 
provide even an approximate description of the system 
when the spinning speed becomes comparable to the qua- 
drupolar coupling, while SPT is in good agreement 
throughout the range of experimental parameters. 

The aim of this work is to give a general and coherent 
framework for treating second- and higher-order trunca- 
tion effects that commonly arise in NMR. Although this 
may be done by dynamic methods (i.e., by going to the 
rotating frame), it is much simpler to use static diagonal- 
ization methods, since the Hamiltonian is time indepen- 
dent. The usual perturbation expansions for the diagonal- 
ization are formulated in terms of matrix elements.” We 
shall, however, reformulate these in terms of operators de- 
composed into irreducible tensors. Two different methods, 
SPT and Van Vleck transformation (VVT), will be given; 
SPT is useful for systems with a finite number of levels and 
VVT is adapted to highly degenerate (e.g., dipolar broad- 
ened) systems. Then we shall generate effective Hamilto- 
nians and interaction frames that are suitable to analyze 
averaging experiments. The effective Hamiltonian yielded 
by these static methods can be used to analyze some as- 
pects of common coherent averaging experiments, either 
by radio-frequency irradiation or sample rotation. Finally, 
we will discuss the proper conditions under which AHT 
describes higher-order truncations and the difficulties in- 
volved in extending this approach to include sample mo- 
tion. 
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8948 Goldman et al.: Truncations in solid-state nuclear magnetic resonance 

AHT 
---I :?-i A-- l I I Y .v. 

12 6 0 -6 -12 1.2 .6 0 -6 -1.2 1.2 .6 0 -.6 -1.7. 

Frequency (kHr) 

FIG. 1. Exact, SPT, and AHT simulations of the NMR transitions of a 
single-crystal sample, containing equivalent uncoupled quadrupolar nu- 
clei of spin i, and spinning around the magic angle at three different 
speeds. The spinning speeds (vR=O, 2, and 50 kHz), are selected to fall 
in the ranges O-I@ vz, $g/vz- vp and vp- vz, showing three different 
behaviors of the AHT. The SPT simulations were performed in the lab- 
oratory frame using a nontilted diagonal Hamiltonian [V= 1 in Eqs. (6) 
and (7)] containing the Zeeman interaction and the quadrupolar inter- 
action truncated to second order [Eqs. (lo), (12), and (13)]. The AHT 
simulations were performed in the rotating frame using only the first- and 
second-order truncated quadrupolar interaction including off-diagonal el- 
ements as given in Eq. (65). The dwell times are chosen to avoid folding 
of spinning sidebands in the AHT and SPT approximations, but it is taken 
5 times smaller than the Zeeman period for all the exact simulations to 
avoid aliasing of the various multiple quantum transitions. In the later 
case we preferred to reduce the dwell time (increasing the computation 
time considerably) instead of implementing some kind of filtering which 
would then make the code different from that of the other cases. The 
continuous motion of the sample is approximated as a succession of dis- 
crete evenly distributed orientations of duration AZ. A At of tz/lO was 
employed in the exact vR=2 and 50 kHz simulations. A A.t of fa/20 was 
employed in the SPT and AHT v, = 2 and 50 kHz simulations. Only the 
region of the central *f transition is shown for the v&% spectra. Ad- 
ditional details of the calculation are given in the Appendix. 

II. STATIC PERTURBATION THEORY IN TERMS 
OF IRREDUCIBLE TENSOR OPERATORS 

In its usual formulation, SPT (Ref. 19) provides an 
expansion for the eigenvalues and eigenstates of a per- 
turbed operator (which in our case will be the internal 
Hamiltonian). The results to second order are summarized 
by the following well-known formulas (limited here to 
nondegenerate systems) : 

H=fp)+jp f (1) 

HIVj)=EjIUj), H’“‘)j)=E,!o’Ij), (2) 

Ej=Ej”)+E<j’)+Ej*)+-, Iuj)= Ij)+ Id”)+-, 3 
(3) 

.Ey’=(j(IP)Ij), (4) 

J. Chem. Phys., Vol. 97, No. 12, 15 December 1992 
Downloaded 01 May 2002 to 128.146.48.9. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



+ x (jl@ )lk)(klH”)lj) 0) 0) , k#i $ -&k 

This procedure can be summarized in operator form by the 
equations: 

H= VDV+, (6) 

D=H’o’+D”)+D’*)+... , V=l+v(‘)+.**, (7) 

in the Appendix. The result is much more concise than the 
usual derivations,1Y2*3,18 in which the shifts to second order 
are given separately for each energy level and it is similar 
to that given by AHT (Refs. 14-17) except for the restric- 

(5) tion of DC*) to diagonal elements. Using the Clebsch- 
Gordan series20121 in Eq. ( 13), the lattice products of 
second-rank tensors may of course be rewritten as combi- 
nations of tensors of ranks 0, 2, and 4, while the spin 
commutators will yield only ranks 1 and 3.17 In cases of 
half-integer spins for which the quadrupolar interaction is 
large compared to the achievable bandwidths of radio fre- 
quency (t-f) pulses, it may also be useful to restrict the spin 
part to the central =t=f transition by introducing the corre- 
sponding pseudo-spin 4 operator.17 

Another example is the influence, in second order, of 
the quadrupolar interaction of a spin S > i on the hetero- 
nuclear dipolar coupling between S and a nucleus I = f, for 
example, 13C and 14N.** We assume the dipolar interaction 
to be much smaller than the quadrupolar interaction. This 
case has been rather extensively explored using SPT (Refs. 
22-3 1) and AHT (Ref. 32) but the results were not given 
in terms of irreducible tensors. The H(O) and H”’ terms of 
the Hamiltonian read as 

D(l)= c lj)~?j”(jl, (8) 

D’*‘= c lj)~*‘(jl, v”‘= c I+‘)(jl, (9) 
i i 

where D and Den) are diagonal operators and V is a unitary 
transformation. These equations give the operators in 
terms of matrix elements and, in general, there is no con- 
venient way of simplifying them. An expansion of the outer 
products in terms of irreducible tensors*“*’ could be devel- 
oped but the calculation would be awkward and the result 
would not give any intuitive understanding of the system. 
However, in the case of NMR, the Zeeman interaction 
i#‘) is a linear combination of 1, angular momentum op- 
erators, and &” is the superposition of the various local 
interactions which have simple expressions in irreducible 
tensor form. The matrix element (k IH”’ Ij) in Eqs. ( l>- 
(5) can thus be simplified using the selection rules associ- 
ated with irreducible tensors, and eventually pure irreduc- 
ible tensor expansions for the D and V matrices can be 
found. We shall demonstrate this procedure on two com- 
mon cases of second-order effects. 

In our first example, we deal with probably the sim- 
plest case found in NMR: a single nucleus of spin greater 
than f, with a quadrupolar coupling smaller than the Zee- 
man interaction. We have 

p”=H,= +,,zlz, (10) 

I~“=HQ=coQC (--llmR2-mT2ms (11) 
m 

where, following the notation of Haeberlen,” the quadru- 
polar interaction is expanded using Z as quantization axis. 
The R,, are the lattice parts and depend on the orienta- 
tion in the lab frame of the principal axis of the interaction. 
Inserting these expressions into Eqs. ( 1 )-( 9), we find 

D”)=q R20T20, (12) 

42 D’*‘=- c R2mR2-m[T2-m~T2mI 
m , 

ai2 m>O 
(13) 

(14) 

The first-order expression, Eq. ( 12), is the well-known 
truncated Hamiltonian and its derivation from Eq. (8) is 
straightforward. The calculation of DC*’ and v”’ is given 

H”‘=H;+H;= --w~I~--w.$~, (15) 

H(~)=H~+H~, (16) 

H;=ae 2 ( - 1 )mR2q-m~m, (17) 
m 

HE=& W)mR;mmT;S, 
m 

=q,c G-l)mR~-m 
m ( 

C<l lnm--nlll2m) 
” 

XCnTfm-n 9 1 
(18) 

where Hh and H$ are the Zeeman interactions for 
spins I and S, respectively, Hi is the spin S quadrupolar 
interaction , Hg is the I-S dipolar interaction, and 
(1 1 n m--n I 1 1 2 m) is the Clebsch-Gordan coefficient 
(j, j2 ml m2 Ij’ j2 JM). To first order the truncated inter- 
actions are given by the usual m = 0 and n = 0 terms [Hz 
gives the same expressions as Eqs. (12)-( 14)], but to sec- 
ond order we find an uncoupled quadrupolar contribution, 
a negligible second-order dipolar contribution, and a sig- 
nificant cross term between Hi and Hg, which reads as 

D;A= J3/27 CR?- ,Rf, +@,I@-, 1 T’ ? 10 20’ (19) 

Again, this expression is derived by inserting Eqs. (15)- 
( 18) into Eq. (9) and gives a much more concise view of 
the problem than previous derivations based on individual 
energy level shifts. Its derivation, also given in the Appen- 
dix, is slightly more complex than in the previous case 
since it involves an uncoupled representation of the spin 
part in the dipolar interaction, but it still involves the se- 
lection rules for the T,, as the main principle. We shall 
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not give the expression for F’(i) since it does not involve 
cross terms and the main contribution comes from the 
quadrupolar interaction as in Eq. ( 14). 

With this general tool, the second-order effects clearly 
show a lattice orientation behavior that is expanded as 
linear combinations of Wigner matrices of ranks 0, 2, and 
4. Trajectories like DAS or DOR can readily be seen to 
average these anisotropy effects. 

By using the appropriate formulas,‘9 the present 
method can be extended to some cases of degenerate sys- 
tems, provided the number of levels remains small. How- 
ever, for highly degenerate systems this procedure cannot 
be used and alternative approaches, for instance, the Van 
Vleck transformation, must be adopted.33 We now develop 
the VVT equations and treat in some detail the case of 
homogeneous dipolar broadening in a solid. 

These operator equations do not define the Den) and S’“’ in 
a unique way [no more than Eqs. (20)-(22) define D and 
WJ. Aside from the trivial case of adding do’ to SC’) 
(equivalent to a phase factor on the eigenstates), any other 
operator commuting with H”’ may be added to a given 
S”’ to generate another solution. There is no easy way to 
solve Eqs. (25) and (26) in general. As in SPT, a solution 
for the Den) and SCn) was initially given in terms of matrix 
elements which would eventually yield the expansions for 
D and W in terms of irreducible tensors.33 However, in 
some cases it is possible to directly generate an irreducible 
tensor solution to Eqs. (20)-( 22). 

For the case of homogenous dipolar couplings, the 
Hamiltonians read as 

H”‘=H,= -& I$)= -ozlz, (27) 
i 

III. VAN VLECK TRANSFORMATION IN TERMS 
OF IRREDUCIBLE TENSOR OPERATORS 

j+“=H,,= 1 tij’ 
icj 

WT, which was first applied by Van Vleck to molec- 
ular spectroscopy calculations,33 is a perturbative method 
used to block diagonalize an operator having groups of 
degenerate eigenvalues. Block diagonalization means that 
no off-diagonal elements connect states of different unper- 
turbed eigenvalues. However, no restrictions are set inside 
each eigenspace, which may be highly degenerate. In an 
operator formalism this is defined by 

H=ti’)+ti’)= WDW , (20) 

[I#“, D] =O, (21) 

Wwf=l, (22) 
where here we denote the tilting matrix by W to indicate 
that it does not completely diagonalize the Hamiltonian. 
As in SPT, the perturbation expansion can be written in 
operator form. The expansion of D is identical to Eq. (9), 
and it is convenient to expand Was 

W=exp(iS(‘))exp(iS(2))exp(iS(3))*** , (23) 
where the SCn) are Hermitian operators whose magnitudes 
decrease as ( 1 H”) 1 /I@‘) I)“. Such an expansion is at 
variance with previous treatments,33’13 but simplifies later 
calculations. Keeping terms up to the second order, Eq. 
(20) is expanded as 
@‘+D”‘+D’*‘+... 

= ,s@ c (-l)“‘Rpi),,,TF<= 2 H,,, , (28) 
m m 

where i and j label the spin sites, and the R’“’ and T’“’ are 
the usual lattice and spin parts of the two-spin coupling. 
The decomposition of Ho into H,, introduced by Jeener,34 
is equivalent to the usual dipolar alphabet formalism,’ and 
can also be used to represent the quadrupolar interaction 
treated in Sec. II. An important property of the H, is their 
behavior under rotations around Z: 

LIZ, K,J =mW,, . (29) 

As a consequence, another important easily proven rela- 
tionship follows: 

(Iz,rpm,)=( pb)( pm/J 
The relationships in Eqs. (29) and (30) are the key ele- 
ments to solving Eqs. (25) and (26) in terms of irreducible 
tensors. 

If we set H(‘)=H,=B,,J9m in Eq. (25), we see that 
the expression for D (l) has nonsecular contributions 
(m#O) coming from H”‘. Since D(l) commutes with 
H(O), as all DC”), the commutator, [H”), i.S”“], must can- 
cel the nonsecular terms. Using this constraint, Eq. (27) 
and Eq. (29) can be combined to obtain a simple solution 
for SC’): 

={l-is(2)+...)[l-is(1)+(is(1))2/2+...] 

X(H’“‘+H”‘)(l+iS’1’+(iS”‘)2/2+~~~} 
sL-& mzo 2, 

X(l+iS’*‘+*~*), 
and thus, 

(24) 
and by collecting the various orders yields 

D(‘)=@‘)+ [fro’, if+“], (25) 

D(*)= [f$‘), #‘)I +f[ [H(O), ifj’(‘)], is(‘)] 

+ [IP”), iS(*)]. (26) 

D”‘=H,, (32) 
where D”’ is the well-known secular part. The solution for 
higher orders follows the same general procedure: the 
lower-order terms are inserted, the secular parts are as- 
signed to D’“‘, and S’(“) is tailored to cancel the nonsecular 
parts by using Eq. (30) in the commutator [H”‘, iS’“‘]. 
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For instance, to get the second-order expressions from Eq. 
(26), we first introduce So’, given by Eq. (31), into the 
first two terms: 

[I$‘), iScl)] +f[ [I$‘), iS(‘)], iS”‘] 

=- ,;, ( ms Wofml+ c Wnfml), 
m#Q MO 

(33) 
and we identify the secular terms as those with m +n=O. 
Thus 

[H-m, Hml D’2’,L c m , 
WZ m>O 

$2) c 
m#n, m* 

(35) 
Higher-order corrections, though more complicated, can 
be computed in a similar way. 

Expressions for the VVT expansion to second order 
have already been found,34 but the tilting operator iS(‘) 
was not given and the method could not be easily extended 
to higher orders. A method similar to our VVT operator 
expansion was previously35 used to compute iS(‘). For ho- 
mogeneously coupled spin-4 nuclei the second-order term 
DC*) [analogous to Eq. (34)] was shown to contain two 
different parts obtained when expanding the sums over the 
nuclear indices in the commutators.34’35 The first part con- 
tains two spin contributions, of the @+Iy’ type, that 
only induce a shift of the transition and commute with 
DC’) =H,,. The second part contains three spin contribu- 
tions that do not shift the line and do not commute with 
Ho- 

The VVT method is not restricted to the dipolar case 
and can be applied, for instance, to the quadrupolar case 
treated in the previous section. The prerequisite for WT to 
be efficient is the possibility of expanding the perturbation 
ti’) into contributions which satisfy the commutation re- 
lation in Eq. (29). Indeed, the results of the two methods 
[in Eqs. (13) and (14), and (34), and (31), respectively] 
are identical for this case and, for higher-order contribu- 
tions, VVT provides the results in a much simpler way. 
However, in other cases, VVT may be cumbersome for 
second-order calculations (for instance, when different 
spins are involved) or not even tractable if we are inter- 
ested in a full diagonalization of a degenerate Hamiltonian 
(in this case SPT could be applied if the number of levels 
is finite). 

IV. GENERATION OF AN EFFECTIVE 
HAMILTONIAN USING SPT OR VVT 

As is well known,19 the description of a quantum- 
mechanical system (evolution, observation) is greatly sim- 
plified by choosing a reference frame in which the Hamil- 
tonian is in diagonal (or block-diagonal) form. Fur- 
thermore, when applying coherent averaging procedures it 
is often necessary to introduce an interaction representa- 
tion that, like a propagator, is more easily dealt with in a 
diagonal basis. Thus, if an exact diagonal form is 

available for the Hamiltonian, all the calculations can be 
carried out in the corresponding diagonal reference frame. 
However, if only approximate diagonalizations are avail- 
able, it is important to know to what extent this affects the 
various operations to be carried out. As we shall see, for a 
given system, different levels of approximation may be nec- 
essary depending on the kind of observation and irradia- 
tion procedures involved in the experiment. 

To analyze the effect of the various approximations, 
the general procedure is to write the desired equations in 
the diagonal frame (also referred to as the tilted frame) 
and then introduce the required perturbation expansions. 
If the Hamiltonian is diagonalized by a decomposition like 
Eq. (20), any operator A will be transformed to the tilted 
frame by the general rule 

A+A*=@AW. (36) 

Of course, in the particular case of the Hamiltonian, we 
have H-+H*=D. In NMR, where the main contribution 
to the Hamiltonian is the Zeeman interaction, the analysis 
is simplified by two arguments. First, the application of Eq. 
(36) is simplified by a perturbation expansion of the oper- 
ator Win terms of irreducible tensors. Second, the Hamil- 
tonian H*=D retains the general structure of the 1, man- 
ifolds since it is reduced to the Zeeman interaction in 
zeroth order. This last statement is obvious but important 
because it implies that any NMR experiment can be ana- 
lyzed with the same concepts and tools (rotating frames, 
averaging techniques, multiple quantum coherences, etc.) 
that are currently applied to the usual situations (where 
only first-order expansions without tilting are used). Thus, 
the system can be described by an effective Hamiltonian, 
given in the Zeeman eigenbasis by H*=D. However, in 
this new representation all the operators (density matrix, 
radio frequency couplings, etc.) are modified by the tilting 
and may display some unusual properties. 

Let us demonstrate this in the simple case of the ob- 
servation of the free-induction decay. If the initial density 
matrix is p(0) and the observable is 1,, the signal is given 
by 

M(t) =Tr[e-‘H’p(O)e’H’I,] 

=Tr[p*(0)eiH*‘l$?-‘H*‘], (37) 

and the second expression can be reinterpreted as the sig- 
nal in a Zeeman eigenstate basis with a purely diagonal 
Hamiltonian H*, but with modified initial density matrix 
and observable. The various possible transitions between 
levels of H* define the frequency spectrum of M( t), where 
the amplitudes are proportional to the matrix elements of 
G. Thus, the usual Am = f 1 selection rule, associated 
with pure IX, does not apply in general. 

However, in standard NMR experiments, the signal is 
observed with a tuned circuit that selects a band of fre- 
quencies around some definite Am value. Although a gen- 
eral Fourier analysis of M( t) is not easy, the perturbation 
expansion of the tilting operator W in irreducible tensor 
form provides a simple decomposition as a function of Am. 
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For instance, by expanding W [Eq. (23)] to first order, and 
then Px [using Eq. (36)], M(t) can be given as 

M(t)~Tr[p*(0)eiH*clxe-iH*‘] 

+Tr[p*(0)eiH*‘[lx, i5’(1)]e-iH*‘], (38) 

where the SC’) terms have been regrouped into a commu- 
tator. To zeroth order in W the usual Am= f 1 rule now 
applies, and to a small error in the amplitudes we can thus 
calculate the Zeeman spectrum using the untilted opera- 
tors and the diagonal effective Hamiltonian, IP, which in 
turn can be approximated to any given order. This picture, 
in which P and Ware not expanded to the same order, is 
well suited to NMR experiments, where the frequency res- 
olution can be very high, but the amplitudes of the signals 
are seldom very accurate. 

where the second expression was obtained by again ex- 
panding the tilting operator, W, to first order using Eqs. 
(36), (23), and (31). As in the procedure used in the 
untilted Zeeman case,lu3 the effect of the pulse is analyzed 
in a rotating frame, defined by the unitary transformation 
e-iuIzt. 

Equation (38) is also well suited to extract overtones, 
i.e., contributions other than the Am= i 1 transitions.36 
These occur to the lowest order from the first-order cor- 
rection to W, through the term containing [Ix, LS”‘] in 
Eq. (38). For a homonuclear system, S(l) is expanded 
according to Eq. (23 ), yielding 

~*~~a=~-iOIzt~*~iWIz~~-i~Izt~~w~iolz’. (43) 

We shall refer to this representation as the “rotating tilted 
frame,” which should not be confused with the “tilted ro- 
tating frame” introduced in the analysis of multiple-pulse 
experiments.“~‘* The transformed density matrix p’(t) 
does not contain any high-frequency components, because 
it evolves under the Hamiltonian 

[;(I+ +I- ), Hml 
m (39) 

=kz [([I-, HI]--[I+, H-,]) 

H”=H*+cldz (44) 

(since Iz and H* commute, H” is reduced to the offset and 
the local interactions). The effective rf Hamiltonian is ob- 
tained from the static parts of Eq. (42) after transforma- 
tion to the tilted rotating frame using 

e -iolZfl~eioIz’=eFiotr~, ,-ioI,tHmeiwIzt, ,-imotH, , 

(45) 

f 
[I-, H21 -[I+, H-21 

2 

+ ([I+, Hll- [I-, H-11 ,I, (40) 

where the terms with Am = 0, f 1, and f 2 have been re- 
grouped. Thus we see that the [Ix, S”‘] contribution to 
the signal will contain zero to two quantum coherences, of 
which only the Am= f 2 will be retained in an overtone 
experiment, and the corresponding signal will then be 

M overtone(t) ==Tr p(OkiH*’ $-- ( [I+, H,] 
Z 

[ (I++I-1, Hml 
mwz , 

(42) 

[the second relation is the integrated form of Eq. (29)]. 
This yields the effective rf Hamiltonian in the rotating 
tilted frame 

f&=w b+kz (- [I+, H-21 + [I-, &I) (46) 

=wrf Ix+& [Ix, h+H--21 , (47) 
Z 

where the last expression is deduced using the fact that 
[Ia H,,I=O. 

Similarly, the effect of r-f irradiation at the overtone 
transition frequency can be deduced. Using a cos(2ot) 

l(ei20t+e--Rot =I ) time dependence of the t-f field in Eq. 
(42) and again using Eq. (45), the static part is 

As in the case of the Zeeman transition we see that 
the Hamiltonian is diagonal and can be expanded to any 
order. However, the effective observable is now 
( 1/2wz) ([I+, H,] - [I-, H-J) instead of 1,. 

rp,=zW+, H,l-[I-, H-,1). 

The addition of a time-dependent perturbation to 
the Hamiltonian can be handled in a similar manner pro- 
vided the magnitude of the time-dependent perturbation is 
small compared to the time-independent part of the Hamil- 
tonian. Let us demonstrate this for the case of rf irradia- 
tion. In the tilted representation [Eq. (36)], the Hamil- 
tonian for an rf field of magnitude 2wrf= 2yB, along X can 
be written as 

As expected the zeroth-order term vanishes leaving the 
first-order term as the leading contribution. Except for the 
magnitude wrf , Rq. (48) is equal to the overtone observ- 
able given in Eq. (41). Although the underlying physical 
phenomena are different, this is not surprising since both 
the rf and the observable involved the I, operator in a 
tilted frame where we applied the same mathematical for- 
malism based on a filtering of the Zeeman frequency mul- 
tiples. 
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V. STATIC PERTURBATION THEORIES 
AND ROTATING SAMPLES 

In Sec. IV we introduced the tilted representation and 
the corresponding effective Hamiltonian H*. In this repre- 
sentation most experiments can be described, even when 
higher-order effects are present, within the convenient the- 
oretical environment of fully diagonal interactions (similar 
to the treatment of first-order perturbations encountered in 
more common NMR situations). Just as was done to ob- 
tain the effective pulse Hamiltonian in Eqs. (47) and (48)) 
a rotating frame can be introduced to eliminate the time 
dependence due to the Zeeman interaction. In this rotating 
tilted frame, the system is described by a Hamiltonian H”, 
as in Eq. (44), which contains only the truncated local 
interactions. Thus, pulse averaging experiments can be an- 
alyzed with the usual tools, e.g., average Hamiltonian the- 
ory or secular averaging theory,11*37,3* applied to H” and 
the rf-field coupling. At this point, the tilting procedure 
has no other effects, since the tilting operator W is con- 
stant. However, for averaging processes involving sample 
reorientation (e.g., MAS, DAS, and DOR) the tilting be- 
comes time dependent and deviations from this description 
can be expected. 

degenerate or the non-Abelian generalization of Berry’s 
phase if it is degenerate.42 The term B arises from the fact 
that the global geometry of the parameter space describing 
the spin eigenstates is not flat, and as states evolve in this 
space they acquire twists (phase shifts) due to the geom- 
etry, in addition to the phase shifts due to the dynamic 
evolution D(t). Put another way, the term B reflects prop- 
erties of the path followed by the system parameters as 
they are changed and not the amount of time spent tra- 
versing the path (as long as the adiabatic limit is main- 
tained) . Deviations from adiabaticity can be handled using 
perturbation expansions similar to VVT,39 in this case 
some mixing of the eigenstates of D occurs, corresponding 
to excitation of transitions due to C( 1). This mixing blurs 
the respective assignment of dynamic and geometric evo- 
lution to D(f) and C(f). In the following, however, we 
shall only consider the adiabatic limit since it is satisfied in 
almost all NMR applications involving sample reorienta- 
tion. Note that the geometric term has been discussed in 
several previous studies of high-field NMR experiments on 
rotating solids.43”5 

In order to study the effects of a time-dependent tilting 
operator, we begin with the Liouville-von Neumann equa- 
tion in the laboratory frame and a time-dependent Hamil- 
tonian H(t) =&O)+@*)(t), where the local interaction, 
H”‘(t), is rendered time dependent by the sample motion. 
Following a derivation adapted from Messiah,39 we apply a 
block-diagonalization technique to H(t) for each value of t 
(for instance, the VVT perturbation expansion presented 
in the previous section). The corresponding time- 
dependent tilting operator W(t) defines the usual tilted 
representation via Eq. (36) for each value of f; in this 
representation the Liouville-von Neumann equation be- 
comes 

The size of the effects introduced by C(t) depends on 
the amount of tilting, that is, on the extent to which the 
Zeeman basis defined by the external magnetic field fails to 
coincide with the eigenvectors of the total Hamiltonian. 
The limiting case of this failure is pure NQR for which 
there is no external field. In this case, as has been shown 
experimentally,46p47 the spectrum of a rotating sample is 
qualitatively different from that of a static one: sharp res- 
onances of the static sample split into a finite constant 
number of sidebands with spacings irrationally related to 
the spinning frequency. The other limit is zero tilting, re- 
alized when higher-order effects are completely negligible. 
This limit covers, for example, most 13C spectra of organic 
solids. 

dp*W 
i-=[D(t)+C(f)g*(t)], 

dt 

For most high-field NMR experiments, the tilting, if 
nonzero, is small, and the perturbation expansion of W to 
second order [Eq. (23)] yields 

(49) 
C(t)=s(“(t)+S(*)(t)+i[S(‘)(t), S(‘)(t)]/2+**.. 

(51) where 

C(t)=&(t) W(t) (50) 

and W(t) =dW( t)/dt. Compared to the static case, the 
effective Hamiltonian contains the additional term C(f), 
the magnitude of which depends on both the amount of 
tilting and the speed of the motion. 

Since the leading term of D is the Zeeman interaction, 
VVT can be applied to the perturbation C. S(‘) and SC*), as 
given in Eqs. (31) and (35), are off diagonal and thus the 
diagonal part of the commutator term in Eq. (5 1) is the 
leading term in the expansion of B(t) and is 

Almost all cases of interest for NMR with sample re- 
orientation fall into the adiabatic limit, defined as the van- 
ishingly slow variation of H(t) or, practically, as the van- 
ishingly small ratio of the sample reorientation frequency 
to the NMR transition frequency. Since the former is typ- 
ically on the kHz scale while the latter is typically of order 
MHz, the limit is achieved. In the adiabatic limit we have 
1 C(t) I< ID(t) 1, and a perturbation technique can be ap- 
plied to the integration of Eq. (49). In first order, D trun- 
cates C for every value of t, and only the block diagonal 
part of it, B= Cdiag, has to be retained. B is in fact the 
operator analog of Berry’s phase40141 if the system is non- 

B”)(t)=-< c 
[H-m(t), Hm(t)l 

2@z m#O m2 ’ (52) 

For example, in the case of a nucleus of spin greater than 
f with a quadrupole coupling, as considered in Eq. ( 1 I), 
we find 

2 

XC 
R2 m(r)R~--m(f) [ T*--m, T2 ml 

m#O m2 
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The spin part of this term is equivalent to that of the 
second-order quadrupolar shift in Eq. ( 13) and induces 
shifts of the observed transitions. Since for spinning sam- 
ples 1 R2 m 1 -wR, with oR the spinning frequency, shifts of 
the resonance lines due to B”’ are of order oR(wdwz)*. 
Several aspects of this result are worth pointing out. The 
first is that B”’ represents only the leading term in powers 
of 1 I#” 1 of the phase shifts due to the geometric evolu- 
tion. Secondly, we note that the shifts of the resonances 
due to B(t) are in a sense artifacts of the rotation, in that 
they are not intrinsic to the local interactions of the spins 
but rather occur onZy in spinning samples; if these shifts are 
not removed, erroneous determinations of local interaction 
parameters, e.g., e*qQ/fi, will be made (although as we 
show later the size of the shifts in practical cases is small). 
Incidentally, it should also be noted that the small tiltings 
found in NMR extend the range of the adiabatic behavior. 
Indeed, for C(t) to be truncated in first order by D(t), only 
its off-diagonal terms need to be negligible compared to wz. 
According to the expansion in Eq. (51), this is equivalent 
to Ii(i) I (wz or o&&//op in the case of the quadrupolar 
interaction. 

The integration of Eq. (49) is not simple, in general, 
since typically D(t) and C(t) do not commute with them- 
selves or each other at all times. However, D is in block- 
diagonal form, with the Zeeman interaction as the leading 
term and in the adiabatic limit B, the block-diagonal part 
of C, is retained. As done previously for the case of a static 
sample, a rotating frame representation given by Eq. (43) 
can be introduced, where D”=D+olz, B”=B, and the 
propagator is 

U”(t)=Texp 
( s 

--i ’ [@(s)+B(s)]ds . 
1 

(54) 
0 

This expression can be simplified in two important cases. If 
the sample motion is fast enough, dynamic averaging tech- 
niques such as AHT, can be applied to obtain an effective 
static Hamiltonian. In first order one gets 

(D”(s) +B(s))(‘)=(D”(s))(‘)+ (B(s))“‘, (55) 
and averages of cross terms enter at higher order. Since 
typically JBI4(DI, most of the Berry’s phase effects are 
described by the first-order term which is decoupled from 
D”. Another important simple case is found in nondegen- 
erate systems, for which the time ordering of Eq. (54) can 
be ignored, regardless of the modulation speed. For this 
case 

U”(t)=exp 
i s 

--i ’ [o”(s) +B(s)]ds 
0 

=exp( -iJ: D”(s)ds)exp( -iJot B(s)&); 

(56) 
the Berry’s phase contribution is again factored out, here 
rigorously since [D”, B] =O. 

A general treatment of a sample undergoing cyclic mo- 
tion (as in MAS, DAS, and DOR) can be effected by 
Fourier analyzing the H,(t) as 

TABLE I. Shifts of the central transition as a function of spinning fre- 
quency. Parameters are as in Fig. 1. Shown are the line positions of the 
exact calculation and the second-order SPT calculation (the latter is 
based on W=l; see text). Shown also are the differences between these 
calculations and the line shifts induced by the leading geometric correc- 
tion to the SPT calculation. 

Rotor Freq. Exact SPT 
(Hz) Exact (Hz) SPT (Hz) (Hz) (it)(‘) (Hz) 

0 390.6 390.6 0 0 
2ooo 196.3 195.3 1.0 1.6 
5OtWO 231.3 195.3 36 39 

ff,( t) = c ffm,p e-@OR’. 
P 

Then, the Berry’s phase contribution to the average Hamil- 
tonian in first order can be extracted from Eq. (52) as 

(B)“‘= -q c PW-m,-p7 4n,pl 

20, m#O,p m2 (58) 

Similarly to Eq. (53), in the case of a quadrupolar nucleus 
of spin greater than i this expression yields 

2 

XC 
P R2m,p Rz--~,-~ t T2-nv T2ml 

* (59) 
m#Q,p m2 

We have evaluated this expression numerically for the pa- 
rameters used in Fig. 1, and show in Table I its effect on 
the resonance positions. The results of the exact calculation 
reflect what would be observed experimentally for these 
parameters, namely, the exact solution of the Liouville- 
von Neumann equation. Such a solution includes the dy- 
namic effects due to the local parameters of the spin system 
(the measurement of which is typically the goal of the 
NMR experiment) and the geometric effects of sample mo- 
tion (these effects are artifacts, as far as accurate measure- 
ment of the nuclear parameters is concerned). The SPT 
calculation includes second-order effects but neglects all 
geometric effects. The difference between these calculations 
arises from higher-order dynamic terms and the geometric 
term. Comparison of the differences with (B)“’ shows that 
the leading-order geometric correction accounts for much 
of the discrepancy between the exact and SPT line posi- 
tions. Moreover, the agreement improves at faster spinning 
speeds. This trend can be understood by realizing that the 
third-order term of SPT is of size wp( odw&* (4.2 Hz for 
these parameters), which means that at slow spinning 
speeds (wR < wQ) it is the dominant correction, while for 
fast spinning the Berry’s phase term is dominant. 

For “typical” experimental parameters of I=$, ~z= 50 
MHz, e*qQ/fi= 3 MHz, and ‘VR = 5 kHz, the leading term 
of the geometric shift of the central transition is 1.4 Hz, 
assuming the same orientation of the PAS as was used in 
the simulations (the third-order SPT term is of the order of 
100 Hz). For powder samples, each crystallite will follow 
a different trajectory, and will thus acquire a different shift. 
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The geometric term therefore broadens powder patterns, 
but of course by only a small amount in realistic cases. In 
practical applications it can be disregarded and the theo- 
retical framework becomes equivalent to that of a static 
sample, as explored in the previous section, in which the 
tilting of the eigenstates is neglected. 

We close this section by noting that it is likely that the 
term C represents the fundamental limit of resolution for 
experiments designed to remove second- and higher-order 
quadrupolar broadening, such as DAS and DOR. These 
experiments exploit the symmetries of the eigenvalues of 
the second-order quadrupolar Hamiltonian; if the geomet- 
ric term breaks these symmetries, a small residual line 
broadening will remain. These ideas are currently being 
investigated quantitatively. 

Vi. DIFFICULTIES WITH AHT APPROACH 
TO TRUNCATION 

In this last section we will highlight some of the prob- 
lems associated with the AHT approach to truncation. We 
begin by describing in what sense AHT provides the “cor- 
rect answer.” The procedure when using AHT for trunca- 
tion is to first convert the Hamiltonian into the rotating 
frame, 

fit*) =eiHzfli(l)e--iHzt, 2 Hme-imV, 
m 

(60) 

where it becomes time dependent and then average it with 
AHT over the Larmor period, ti=2n-/uz, to obtain the 
truncated Hamiltonian (H)=(H)(‘)+ (H)(2)+ -*-, to 
whatever order is necessary. To second order one obtains,i4 

(H)=Ho+ 2 [H-;;zHml- c ‘H;mT1+....a 
m>O mZO 

(61) 
The problem with the AHT approach to truncation comes 
from the assumption that all the observable transitions are 
actually being observed. This assumption coupled with the 
stroboscopic nature of AHT results in a folding of multiple 
quantum transitions into the single quantum spectrum. To 
emphasize these points an additional set of exact SPT and 
AHT simulations sampled at multiples of the Larmor pe- 
riod was performed and is shown in Fig. 2. Details of the 
simulation are given in the Appendix and in the caption of 
Fig. 2. In all three simulations the spectrum consists of 
three main Zeeman allowed transitions and three Zeeman 
forbidden transitions of much less intensity which arise 
from multiple-quantum transitions that are folded into the 
spectral window. Both AHT and SPT correctly reproduce 
all of the frequencies and amplitudes of the exact simula- 
tion. 

However, while the Zeeman forbidden multiple quan- 
tum transitions can be unfolded in the exact and SPT sim- 
ulations simply by increasing the spectral window, this is 
not the case in the AHT simulation which must be sampled 
at multiples of the Larmor period. The multiple quantum 
lines in the AHT simulation cannot be unfolded with a 
dwell time shorter than the Larmor period and, in place of 
AHT, Floquet theory4’ is needed to separate the signal 

Exact 

SIT 

- 

12 6 0 -6 -12 
Frequency (Id-k) 

FIG. 2. Exact, SPT, and AHT simulations of the NMR spectrum of a 
static single-c 

7 
stal sample, containing equivalent uncoupled quadrupotar 

nuclei of spin 2. The SPT propagator was calculated as in Fig. 1 but using 
the tilting operator Y expanded to first-order [Eqs. (6), (7), and ( 14)]. 
The dwell time in all three simulations is equal to the Larmor period. The 
vertical scale has been expanded 525 times full scale to show the small 
Zeeman “forbidden” transitions folded into the Am= f 1 spectrum. Ad- 
ditional details of the calculation are given in the Appendix. 

contributions from the different transition orders. Floquet 
theory, as described by Maricq,49 requires the calculation 
of an additional time-dependent operator, P(t), to yield the 
effective propagator in the rotating frame, 

EF( t) =P( t)e-i(mt, (62) 
which is valid at all times. When compared to the propa- 
gator obtained from SPT or VVT in the rotating frame, 

VW, ( t ) = JHzt we - iDt w-t = eiH$ we - iHzt tie - iwDD wtt, 

(63) 
one can see the equivalence of these two approaches by 
setting P(t) = eiHztWe- iHzt fl and (H) = WLY Wt. Note 
that under conditions of stroboscopic sampling at multiples 
of fz, both propagators reduce to the AHT propagator with 
the effective Hamiltonian given by Eq. (61)) which is 
equivalent to a second-order expansion of WLP Wt, 

(H)=wD”~=D(~)+D(*)+~[D(*), s(l)]+.... (64) 
Thus, the truncated Hamiltonian obtained from AHT is 
correct but, of course, results in spectra that would never 
be observed in practice since the typical bandwidth of an 
NMR spectrometer is too small to allow signals over many 
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megahertz to be aliased into the spectrum. It should be 
noted, however, that SPT has an advantage over Floquet 
theory that the perturbation expansion of Win irreducible 
tensor form allows one to analytically separate the signal 
contributions from the different transition orders, thus 
avoiding the short dwell times needed to prevent aliasing of 
the multiple quantum transitions. When only Zeeman- 
allowed transitions are needed, W can be simply 1, and 
only the calculation of D is required. Floquet theory, how- 
ever, requires the additional calculation of P(t) even for 
Zeeman-allowed transitions. 

can be taken into account using a tilted representation, as 
was done in Sec. V. As in Eq. (49), an effective Hamil- 
tonian in the “tilted rotating frame” can be introduced, 

We now focus on the difficulties in treating sample 
motion when using a truncated Hamiltonian obtained from 
AHT. If the sample rotation period, fRR, is much larger than 
the Larmor period, tz (a condition equivalent to the adia- 
batic condition discussed in Sec. V), then the approach 
taken by others’4”5 is to introduce the time dependence 
due to sample motion into Eq. (61) to obtain 

(H)*(t)=D(t)+C(t) , (67) 

where C(t) is again defined as in Eq. (50). This Hamil- 
tonian describes the system evolution in a “tilted rotating 
frame” that must not be confused with the rotating tilted 
frame introduced previously, nor with the usual tilted ro- 
tating frame used in multiple-pulse experiments.““’ Fol- 
lowing the derivations in Sec. V, the propagator in the 
rotating frame can be given as 

In contrast, in the adiabatic limit the rigorous expression, 
deduced from Eq. (54)) for the propagator in the rotating 
frame and sampled at multiples of the Larmor period is 

(H)(t)=H,(t)+ c [H-m(;;fm(t)l m>o 
~exact(nti) = W(nt,)Te-‘~rz[d(S)+B’S’l~~~(0), (69) 

-2 [Ho(t), &n(t) I+. . ., 
(65) 

miJ=(’ mwz 
and then apply AHT to this expression to obtain an effec- 
tive time-independent Hamiltonian averaged over the sam- 
ple motion. This approach is similar to the “second aver- 
aging” method” where averaging processes of different 
time scales are treated successively. 

The difficulty with this approach is that Eq. (65), just 
like Eq. (61), has the constraint that it can only be eval- 
uated at integer multiples of the Larmor period. This con- 
straint imposes a discreteness on the motion so that instead 
of describing a sample undergoing continuous motion, Eq. 
(65) describes a sample hopping at integer multiples of tz 
between discrete orientations on the trajectory of the con- 
tinuous motion. When the AHT truncation is only taken to 
first order, then the approximation of continuous motion 
by discrete hops at integer multiples of tz is a valid one. 
However, when the AHT truncation is taken beyond first 
order, the approximation of continuous motion by discrete 
hops at integer multiples of tz requires such restrictive 
constraints over the normal adiabatic contraints that Eq. 
(65) has limited utility. 

where B(t) is the Berry’s phase term. In Eq. (69) B(t) is 
obtained in lowest order from truncation of C(t) by D(t), 
as shown by the Liouville-von Neumann equation in the 
laboratory frame [Eq. (49)]. However, in the AHT case 
[with the Hamiltonian in Eq. (67)], the truncation of C(t) 
in the propagator of Eq. (68) is determined by D”(t) which 
does not contain the Zeeman interaction. Thus, depending 
on the rotation speed and the structure of the interaction 
Hamiltonian D”(t), AHT yields a pseudo-Berry’s phase 
term that can deviate significantly from the B(t) predicted 
by the rigorous description. 

Without making any restrictive assumptions on the 
motion or the order of the perturbation expansions, we can 
show the conditions under which Eq. (65) fails to provide 
a valid approximation for treating sample motion when 
higher-order truncations are present. As a starting point 
we introduce the time dependence due to sample motion 
into Eq. (64)) which we showed earlier to be equivalent to 
Eq. (61), to obtain 

(H)(t) = W(t)o”(t) J@(t) 

For instance, let us examine the simple case of a qua- 
drupolar nucleus of spin t (as used in our simulations). 
Obviously, C(t) can be nonzero only when perturbative 
corrections beyond first order are required. Since the eigen- 
states of o”(t) and Hz are identical (i.e., they commute), 
C(t) will be truncated in the same way by o”(t) in Eq. 
(68), as it is by Hz in Eq. (49). Using the expansion of 
C(t) in Eq. (5 1) the AHT description in Eq. (68) matches 
the rigorous propagator of Eq. (69) if 1 i(l) 1 (w’~~~, or 
wR(wp For spinning speeds higher than OQ, C(t) may 
become dominant with respect to o”(t), resulting in the 
truncation, at least partially, of D”(t) by C(t). The result- 
ing change of D”( t) may yield significant distortions of the 
spectrum as shown by the AHT simulations of Fig. 1. In 
the case of a highly degenerate system (e.g., homogeneous 
dipolar couplings), this “pseudoadiabatic” condition is 
much more restrictive and the description yielded by AHT 
is even less efficient. 

=D”‘(t)+D’2’(t)+i[D(‘)(t), S”‘(t)]+.*. 

(66) 
which is equivalent to Eq. (65). The sample motion, which 
induces the time dependence of the tilting operator W(t), 

As mentioned earlier, the physical picture that Eq. 
(65) describes is not a continuous motion but rather is a 
discrete hopping at integer multiples of the Larmor period 
along the path of the continuous trajectory. To illustrate 
this point, exact and AHT simulations of a sample hopped 
in discrete steps of wRtz radians along the MAS trajectory 
and sampled at integer multiples of the Larmor period are 
shown in Figs. 3 (a) and 3 (b), respectively. Details of the 
simulation are given in the Appendix and in the caption of 
Fig. 3. The AHT simulation which employs the Hamil- 
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FIG. 3. Exact and AHT simulations of the NMR transitions of a single- 
crystfl sample, containing equivalent uncoupled quadrupolar nuclei of 
spin r hopping along the MAS trajectory in discrete steps of w,At radians, 
where wR = 5 kHz. The dwell time in all three simulations is equal to the 
Larmor period. Only the region of the central *i transition is shown. 
Additional details of the calculation are given in the Appendix. In (a) the 
exact Hamiltonian was employed to describe a sample hopping along the 
MAS trajectory at multiples of At=fz=t,/lOO. In (b) the AHT Hamil- 
tonian given by Eq. (65) was employed to describe a sample hopping 
along the MAS trajectory at multiples of At=rz=r,/lCO. In (c) the exact 
Hamiltonian was employed to describe a sample hopping along the MAS 
trajectory at multiples of At=tz/20=t,s/2000. In the last case the smaller 
AC provides a good approximation for a continuous motion about the 
magic angle. 

tonian of Eq. (65) correctly reproduces all of the frequen- 
cies and amplitudes in the exact simulation of a sample 
hopping at integer multiples of the Larmor period. While 
smaller steps can be employed in an exact simulation to 
obtain a better approximation of continuous motion, as 
shown in Fig. 3 (c), smaller steps will not provide a better 
approximation of continuous motion when using the AHT 
Hamiltonian of Eq. (65). Although the discrete-jump ef- 
fects obtained in Figs. 3(a) and 3(b) would be difficult to 
achieve experimentally, they should be carefully consid- 
ered when performing simulations that involve continuous 
sample motions. To compute an effective propagator in the 
case of continuous sample motion, the usual approach con- 
sists of approximating the continuous motion as a succes- 
sion of equal, small discrete jumps, where the Hamiltonian 
is static for a time At. In the limit where At goes to zero, 
this approximation becomes exact. The intuitive constraint 
might be that At be much smaller than the spinning period, 
tR. This is indeed a valid constraint if the eigenstates of the 
Hamiltonian are time independent or if the total propaga- 
tor can be separated into a dynamic part and a geometric 
part using the adiabatic approximation described in Sec. V. 
However, in our exact simulations no adiabatic approxi- 
mation is made and a single propagator is derived from the 
complete time-dependent Hamiltonian, and erroneous re- 

sults could be obtained unless the much more stringent 
condition At< tz is employed. 

Although the “second averaging”” approach should 
not be applied using Hamiltonians truncated to higher or- 
der with AHT [e.g., Eq. (65)], it can be applied using a 
Hamiltonian truncated only to first order with AHT since, 
in this case, the eigenstates will be time independent. When 
higher-order effects are present an accurate description for 
a spinning sample can be obtained from AHT provided 
that the “second averaging” assumption is avoided and the 
average of the Hamiltonian is calculated in one step over 
both the Larmor and rotor period. By expanding the time 
dependence of the complete Hamiltonian in the rotating 
frame as a Fourier series 
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AHT can be applied to this expression to obtain an effec- 
tive time-independent Hamiltonian averaged over the rotor 
period, where the rotor period is an integer multiple of the 
Larmor period. To second order AHT yields an effective 
Hamiltonian that correctly approximates the dynamic as 
well as the geometric evolution of the system when sam- 
pled stroboscopically at integer multiples of the rotor pe- 
riod. 

VII. SUMMARY 

We have attempted to present a general and consistent 
framework for treating higher-order truncations in NMR 
using SPT and VVT, and have illustrated this with a few 
examples. By exploiting the fact that the Zeeman interac- 
tion, a linear combination of 1, operators, is the dominant 
interaction in NMR, irreducible-tensor expansions for the 
tilting matrix Wand the effective Hamiltonian in the tilted 
frame D are obtained. Irreducible tensor operators simplify 
these calculations since their commutation relationships 
with I, are simple and matrix elements can be obtained 
using simple selection rules. Knowledge of W permits one 
to work in a diagonal frame where operators are modified 
and consequently display unusual properties (e.g., over- 
tone excitation and detection). Coherent averaging tech- 
niques can also be applied in this diagonal frame in the 
same manner as they are when no tilting is present. In 
addition, the perturbative expansion of Wallows the NMR 
signal to be “filtered” according to Am transitions, thus 
avoiding aliasing problems when using small spectral 
widths. Sample motion, which creates a time-dependent 
diagonal basis, can be treated with these techniques using 
the adiabatic approximation to obtain the dynamic as well 
as geometric (Berry’s phase) evolution of the system. Fi- 
nally, the difficulties associated with the AHT approach to 
truncation have been shown to be related to its strobo- 
scopic nature, which aliases multiple quantum transitions 
into the single quantum spectrum. In addition, we have 
demonstrated how “second averaging” with AHT to treat 
multiple time dependencies can sometimes lead to prob- 
lems when the higher-order effects are involved. 
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In conclusion, this formalism provides a coherent 
framework to carry out both analytical and numerical 
analysis on a wide variety of solid-state NMR experiments 
where the truncation by the Zeeman interaction involves 
higher-order effects, for instance, DAS, DOR, or overtone 
spectroscopy, as well as in more standard methods like 
MAS. 
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APPENDIX: CALCULATIONS 

1. Computation methods 

In Figs. l-3 we show simulations of the NMR transi- 
tions of a single-crystal sample, containing equivalent un- 
coupled quadrupolar nuclei of spin 4, spinning around the 
magic angle. The quadrupolar interaction is symmetric and 
its axis is oriented perpendicular to the spinner axis. The 
quadrupolar frequency (yQ=25 kHz) is low enough to 
observe significant effects at usual spinning speeds and the 
Zeeman frequency ( vz= 500 kHz), although not practical 
in standard NMR, is chosen to yield significant second- 
order effects. 

In all exact simulations the Hamiltonian contained the 
Zeeman and the complete untruncated quadrupolar inter- 
action as given by Eqs. ( 10) and ( 11)) respectively. Details 
on the SPT and AHT Hamiltonians used in the simulations 
are given in Figs. l-3. 

In cases of a time-dependent Hamiltonian (i.e., for 
continuous rotation of the sample), the evolution was ap- 
proximated as a set of discrete evenly distributed orienta- 
tions. For each orientation the Hamiltonian was static and 
the propagator for the corresponding time period of dura- 
tion At was obtained by numerical diagonalization. The At 
used in each simulation is given in Figs. 1-3. 

Using an initial density operator of IX, application of 
successive propagators yielded an FID at a preselected 
dwell time. The FID was obtained from a trace of the 
density matrix in the rotating frame with I+ and then zero 
filled, apodized, and Fourier transformed. When the den- 
sity operator was propagated in the laboratory frame it was 
transformed into the rotating frame before taking the trace. 
It must be emphasized that for all cases the same computer 
code (except the rotating frame transformation performed 
prior to the trace) was used with only different Hamilto- 
nians as matrix inputs. 

2. Second-order quadrupole 

To derive Eq. ( 13) from Eq. (9), we expand E(‘) in 
the Zeeman eigenbasis Ij): 

(jlHQIk)(klHQlj) 
k-j ’ (Al) 

Using the irreducible tensor expansion of Ha in Eq. (Al ), 
we then get 

4 $2)=wz ,c, (- lY’+““R2-,,$2-,,,~ , 

x c Ul T2,lk)(kl Tzrntli) 

Hifk k-j ’ 
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(~42) 

Now we apply the general selection rule for irreducible 
tensors, 

#I ~2,li)=~k~+,(j+ml r2,)j), (A31 
which restricts the sum over k in Eq. (A2) to the cases 
where k=j+m’ and k=j-m. The sum over m and m’ is 
thus also restricted to m+m’=O (with m#O) giving 

$U=o’o 2 R2-f2m (jlT2,,,Ij-m) 
wz m#o 

x(i-ml T2-,lj). (A4) 

Using Ij-m)(j-ml =l-~kZj-mlk)(kI, Eq. (A4) be- 
comes 

T, ,T,-, is a diagonal operator in the Zeeman eigenbasis 
(transforming as m=O tensors through rotations around 
Z) and, therefore, commutes with the diagonal projector 
I j) (jl . Using Eq. (9) we obtain 

4 D(2)= -- c 
R2-32 mT2 mT2-m 

646) 
wZ m#C m 

Splitting the sum over m in Eq. (A6) into two equal parts 
and regrouping terms of opposite m into commutators, we 
finally get Eq. (13). 

Similarly, the expression for v”) can be obtained by 
substituting Eq. ( 11) into Eq. (5) and obtaining 

=-- zz m& (-llm R2-iT2m Ij), (A71 

(A81 

3. Heteronuclear second-order dipole/quadrupolar 

To derive Eq. ( 19) using the second-order expansion 
formulas in Eqs. (5) and (9) we start with &‘) 
=H$?+H$ in Eq. (5) and, as explained in the text, we 
only need to calculate the contribution of the cross terms: 
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wJqg?m,= c 
hms I HFI mimi> <mimk I Hi I mm> hIms IHi1 mim&) <mimi I HD” I mm) 

m;m*m,ms E(O) -E(O) + c 
“IFS m;mk m~m*rn~rnS j-$0) -,g(O) 

mm mP$ 

Using the irreducible tensor expressions of the interactions in Eqs. (17) and (18), Eq. (79) then becomes 

DpE(~$s=oDoQ c ( -I)mfm’R~~,,R~~m,(l 1 n m--n1 1 12 m) 
m,m’,n 

x c 

( 

(mm1 Tf n<m-n I mimi> (mimhl cm, I m& 

m;m;-fm,ms hi--mIh+ (mk-mshs 

+ c 
<mImsI cm, I mim&> him&I T{ ,,rf,-, I mImd 

m;m!&mlmS (mi--IhI+ (+-m&b 

(A91 

(A101 

Selection rules for (mImsI T~,,~,-,I mimk) and (mim&l i$,, I mIms) give ml = n + mi, ms = m - n + rni, and 
rn; = mr,m& = m' + ms, respectively. The combination of these selection rules gives n = 0, m + m' = 0, and rnk - ms 
= -m, and the condition rnim~rn~ms translates as m#O. Similar conditions are obtained for the second part of Eq. 
(80) yielding n =0, m +m' =0, and rnk - ms = m. Thus we obtain 

q-w =.d%%2 c R!-mRFm 
"1"s wS m#O m (1 lOm~ll2m)(( m~~~IT~o~mImIms--m)~mIms--l~-mImIms~ 

-(m,msI i$-,ImIm--mdhm-msl T~,Tfm(mIms)). (All) 

Since (ms I rf rt2 I ms) =0 the sum over m is re- 
stricted to m= f 1 and the Clebsch-Gordan co- 
efficient becomes (110 *l/112 *l)=l/v’2. Again 
using ImI ms - m>h m.5 - ml 
=1-x m++f=mlmg- m 1 mimi> (m;rnk I we obtain 

Using [T, * t, T2 F ,] = F tiT2 o, we obtain 

“pE’gms= - $75 7 c Rf-t$,Qm 
m=*l m 

x hmsl TiOi?OImm). (A13) 

Substituting this into Eq. (9) we obtain Eq. ( 19). 
In the usual SPT derivations found in the litera- 

ture,22-31 the quadrupolar interaction is included in the 
unperturbed Hamiltonian PO’. This makes the contribu- 
tion of Eq. ( 19) appear as a first-order contribution of the 
dipolar coupling (together with the usual truncated term) 
over the sum of the Zeeman and quadrupolar interactions. 
Our approach is slightly different since only the Zeeman 
interaction is kept as the zeroth-order term. Although the- 
oretically equivalent, the second procedure involves much 
simpler calculations because the irreducible tensors then 
display the adequate selection rules between unperturbed 
eigenstates. 
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