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1 INTRODUCTION

Dynamic angle spinning (DAS) is a two-dimensional NMR
experiment designed for removing multiple-rank anisotropic
broadenings in solid state NMR. It is a technique that has pro-
ven useful for obtaining the high-resolution isotropic solid state
NMR spectra of the central transition of half-integer quadrupo-
lar nuclei broadened to second order (see also Quadrupolar
Nuclei in Solids). This narrowing is accomplished by using the
angle of the sample rotation axis as a dynamic variable in a
two-dimensional experiment.

It has long been understood that the second-order anisotro-
pic broadenings of the central transition of half-integer nuclei
simply cannot be removed with magic angle or variable angle
spinning,’ and it was even thought that no spatial averaging
solution existed. In 1988 new averaging approaches that solve
this problem were disclosed by both the Pines group and the
Virlet group at the 9th European Experimental NMR confer-
ence m Bad-Aussee. In subsequent publications by both
groups?®? the underlying theory for removing second- and
higher-order broadenings was presented, and two new exper-
imental techniques emerged for removing second-order
broadenings: double rotation (DOR) (see also Double Rotation
and dynamic angle splnnlng (DAS), both first achieved exper-
imentally at Berkeley 45 DAS combines the ideas of switched
rotation axis®’ and discrete averaging experiments® to remove
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the second-order broadenings of the central transition of half-
integer nuclei.

In this article the basic principles behind DAS are discussed
along with a description of how DAS is implemented and
some illustrative examples of its use.

2 BASIC PRINCIPLES OF DYNAMIC ANGLE
SPINNING

In NMR the Zeeman interaction is normally the dominant
nuclear spin interaction, and the NMR transition frequency can
be expanded in a perturbation series,”

(8, ¢) = Q@ 4 g, @) +QP(0,4) +- - (1)

with the Zeeman interaction as the zeroth-order term
0O = B, )

where <y is the nuclear gyromagnetic ratio and B, is the exter-
nal magnetic field strength. The higher order terms in equation
(1) are due to internal spin interactions (e.g. chemical shift,
quadrupolar coupling, etc.). These interactions are second rank
by nature and thus the higher order terms can be expanded in
limited spherical harmonic series
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where (0,¢) are the angles between the external magnetic field
direction and the principal axis system of the internal spin
interactions. The terms "™ and the coefficients cbk() are
listed in Tables 1 and 2 for the chemical shift and quadrupolar
interactions.

In a liquid sample the random and rapid molecular reorien-
tations average the NMR transition frequency over all values
of 6 and ¢. This incoherent averaging over the full sphere
removes all anisotropic broadenings and only the isotropic
NMR frequencies are observed. This can be easily seen by
averaging equations (3) and (4) over the sphere.

To obtain an isotropic spectrum from a solid sample, it is not
necessary to average over all points on the entire sphere.!®
When the anisotropy in the NMR transition frequency is com-
pletely described by second-rank spherical harmonics, as in
equation (3), the anisotropy can be coherently averaged away by
reorientating the sample so that the external magnetic field is di-
rected along only the three vertices on the face of an octahedron
as shown in Figure 1(a). This is often the case with spin-%
nuclei. The discrete reorientation of the sample along these ver-
tices is realized in a magic angle hopping (MAH)® experiment,
(see also Magic Angle Turning & Hopping) and the continuous
rotation on a cone ~ with apex angle of 54.74° which passes
through the vertices of the octahedron, is realized in a magic
angle spinning (MAS)!!"12 experiment (see also Magic Angle
Spinning).




DYNAMIC ANGLE SPINNING 1769

Table 1 Isotropic Frequency Shifts and Spherical Harmonic Coefficients for the m — m — 1 Transition of Spin I from First-Order Perturbation
Theory for Chemical Shift and Quadrupolar Interactions®
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®0xx» Oyy, 07z are the principal components of the chemical shift tensor, X is e’qO/h, and n is the quadrupolar asymmetry parameter.

For NMR transition frequencies with higher than first-order
terms, octahedral symmetry may not be sufficient for obtaining
an isotropic spectrum. For example, if the quadrupolar coupling
is sufficiently large that the second-order term is required to
describe the spectrum, then the size of the first-order broadening
can be on the order of many MHz; thus it can be virtually im-
possible to obtain the complete NMR spectrum of a quadrupolar
nucleus in a polycrystalline sample, since the bandwidth of con-
ventional NMR spectrometers is typically only a few hundred
kHz. Fortunately, for half-integer spin quadrupolar nuclei, the
central m = 1 — 1 transition is unaffected by the first-order
quadrupolar term and in many cases is broadened only by the

second-order term of equation (4), which can be on the order of
a few kHz. Unfortunately, while the second-rank spherical har-
monics in equation (4) are removed using octahedral symmetry,
the fourth-rank spherical harmonics are not. Therefore, to aver-
age away completely the anisotropy in this case a better
approximation to the sphere is required. This can be done by
reorientating the sample so that the external magnetic field is di-
rected along the six vertices on the icosahedron as shown in
Figure 1(b) or in Figure X(c). The discrete reorientation of the
sample along these vertices is realized in a dynamic angle hop-
ping (DAH)® experiment and the continuous rotation on two
cones'® with apex angles of 0° and 63.43° or 37.38° and 79.19°,

Table 2 Isotropic Frequency Shifts and Spherical Harmonic Coefficients for the m — m — 1 Transition of Spin I from Second-order Perturbation
Theory for the Quadrupolar Interaction®
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2y is €’qQ/h and T is the quadrupolar asymmetry parameter.
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Figure 1 (a) Octahedral symmetry can be implemented with a single
continuous trajectory in cases where tensors of rank 2 are to be
eliminated. (b,c) Icosahedral symmetry can be implemented with just two
continuous trajectories in cases where tensors of rank 2 and 4 are to be
eliminated. Time spent along one particular trajectory is proportional to
the number of vertices. In (b) the two spinning axes are $; = 0° and 3, =
63.43°, and the ratio of times spinning at the two angles is 1:5. In (c) the
angles are 8; = 37.38° and (3, = 79.19°, and the ratio of times spinning
at the two angles is 1:1. (Adapted by permission of Elsevier Science
Publishers from B. Q. Sun, J. H. Baltisberger, Y. Wu, A. Samoson, and
A. Pines, ‘Solid State NMR’, 1992, 1, 267, and by permission of
Clarendon Press from Samoson et al.)

which pass through the icosahedral vertices, is realized in a
dynamic angle spinning (DAS)>51014-21 ex periment.

A DAS reorientation trajectory is implemented as a two-
dimensional NMR experiment which correlates a spin’s reson-
ance frequency while spinning at one angle with its frequency
while spinning at a second angle. In DAS the sample is spun
about a single axis for the first evolution period and then
hopped to a second angle for the second evolution period as
shown in Figure 2(a). Two rf pulses are used to quench the
evolution during the time required to hop.

When spinning about a single axis equations (3) and (4) are
averaged to

2
Q(B,¢,¢) = QA + Pa(cosf) Y cSatam(®.¢) (5

m=—2

- 2
Q0(3,6,¢) = Q2 + Py(cosf) Y A Yam(®,4)

m=-2

4
+ P4(cos B) Z Cf,),,YA,m #,¢") (6)

m=—4

where (3 is the angle between the spinner axis and the magnetic
field, P,(cos®) are Legendre polynomials, and (§',¢') are the
angles between the spinner axis and the principal axis system
of the internal spin interactions. If the two rotor axis angles in
a DAS experiment are chosen so that for all the spins the ani-
sotropic frequency at the first angle is mirrored about the iso-
tropic frequency when spinning at the second angle, then all
decay of the signal in #; due to the anisotropic broadening is
refocused into an echo during #,. For systems broadened up to
second order this mirror image condition is fulfilled when the
angle pair (3,,0,) satisfies the conditions

x1Py(cos B1) + x2P2(cos 3,) =0 (7

x1P4(cos B1) + x2Ps(cos B) =0 (8)
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Figure 2 (a) Simplest implementation of 2D DAS pulse sequence. (b)
2D variable angle spinning correlation spectrum obtained from the
sequence in (a). (c) 2D DAS spectrum obtained from (b) after applying
the shearing transformation as described in the text

and
x1t+xn=1 (9)

The DAS echo forms at a time (x,/x;)t; during #, evolution. By
collecting the intensity of the echo tops as a function of #,/x;
and Fourier transforming this interferogram, the isotropic DAS
spectrum is obtained. By collecting all the data in ¢, as a func-
tion of t;, and performing a 2D Fourier transform, a spectrum
as shown in Figure 2(b) is obtained. This 2D spectrum corre-
lates the NMR spectrum obtained while spinning at 3, with the
NMR spectrum obtained while spinning at 3,. If the angle pair
(81,32) satisfies equations (7)~(9), then the 2D correlation for
each site will be isotropic and linear and given by:

1
ws ==——(Qmo-—xlw1) (10)
X2

There is a continuous set of angle pairs that exist which pro-
vide this isotropic 2D correlation, including the angle pairs
(0°,63.43°) where x;/x; = 5 and (37.38°, 79.19°) where x,/x; =
1. Equations (7)-(9) may be solved analytically for the angle
pairs (831,53;) in terms of x; and x;:

14422
Sx
By =cos A —1 1 (11)
3
1= [A
Sx;
Br = cos™ L (12)
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Figure 3 Staticc, MAS, and DAS *Rb NMR spectra of

polycrystalline RbNO;

where 0.8 < xo/x; < 5. Of course, the order of the angle pair
may be reversed with a corresponding reversal of the fractional
time spent at each angle.

The 2D spectrum of Figure 2(b) can be transformed with a
shearing transformation to obtain the 2D DAS spectrum shown
in Figure 2(c), which correlates the isotropic resonance of a
site with its anisotropic lineshape. Shearing transformations are
well known in NMR.?? In DAS the 2D spectrum is sheared by
an angle ds, given by

followed by a scaling of the w; axis by x,. The shearing trans-
formation may be implemented by applying a #-dependent
first-order phase correction:

X
6’3 = ta,n_l (—2
X1

(13)

where

Blt1,w2) = (;‘—j)wzn (15)

before the final Fourier transform with respect to #,. This cor-
rection removes the tilting in S(wq,w,), transforming it into
§'(w'1,w'2), so that an isotropic spectrum may be obtained from
a projection onto the w’; axis.

Figure 3 depicts the static, MAS, and DAS spectra of poly-
crystalline RbNO;. RbNOj; contains three inequivalent Rb sites
in its unit cell. While the MAS provides considerable narrow-
ing of the static spectrum by removing the second-rank
spherical harmonic orientational broadenings, it still contains
scaled fourth-rank orientational broadenings. With DAS, both
second- and fourth-rank orientational broadenings are removed
and the three inequivalent Rb sites can be resolved.

Because DAS is a two-dimensional experiment it is more
time consuming than MAS; however, DAS does provide a
means of separating the anisotropic lineshapes correlated to the
isotropic frequency of each resolved site. For example, Figure
4 depicts the 2D DAS spectrum of RbNO;. Since the isotropic
resonances of all three inequivalent Rb sites can be resolved,
cross sections correlated to each isotropic frequency provide
the separated anisotropic lineshape for each site. These separ-
ated lineshapes can be analyzed to obtain the quadrupolar
coupling parameters associated with each resonance. This infor-
mation can be useful in providing structural information. For
example, in the case of RbNO;, a simple point charge calcu-
lation of the electric field gradients at each Rb site in the unit
cell gives quadrupolar asymmetry parameters of approximately
0.9, 0.6, and 0.3. On this basis, the three resonances in the 2D
DAS spectrum can be assigned to the three sites in the unit
cell as shown in Figure 4. This approach can also be extended
to amorphous solids where a continuous set of overlapping ani-
sotropic lineshapes can also be separated according to
correlated isotropic frequencies and used to quantify continuous
structural distributions.

An interesting consequence of the shearing transformation
in DAS is that the spinning sidebands can appear at nonintegral
multiples of the spinning speed in the isotropic dimension. A
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Figure 4 On the left is the two-dimensional *Rb DAS NMR spectrum of RbNO; at 4.2T. Cross sections from this spectrum provide the
separated one-dimensional anisotropic lineshapes for each ¥’Rb site. These lineshapes can be fitted to obtain the quadrupolar coupling parameters
for each site. In this case each resonance could be assigned to a Rb site in the unit cell (shown on the right) by comparing the electric field gradients
obtained from the measured quadrupolar coupling constants with the electric field gradient at each Rb site obtained from a simple point charge

model calculation (see text). (Adapted by permission of Academic Press

from Grandinetti et al.?
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Figure 5 Schematic examples of the effects of the shearing
transformation on sideband positions in DAS. (a) Unsheared 2D
spectrum. (b) Sheared 2D spectrum obtained from the two-dimensional
spectrum in (a) by a shearing transformation employing a shearing
angle of 45° and a scaling of the w; by x; = 0.5. In this case the
spinning sidebands in the 2D spectrum are aligned with respect to w'y
so that a projection onto the «'; axis only contains spinning sidebands
separated by integer multiples of 0.5Qg. (c) Sheared 2D spectrum
obtained from the 2D spectrum in (a) by a shearing transformation
employing a shearing angle of 38.7° and a scaling of the w; by x; =
0.56. In this case the spinning sidebands in the 2D spectrum are not
aligned with respect to «'; so that a projection onto the «/; axis
contains spinning sidebands that are separated by multiples of and also
sum and difference frequencies of x;{lg = 0.56Q& and x,Qg = 0.440)g.
(Reproduced by permission of Academic Press from P. J. Grandinetti,
Y. K. Lee, J. H. Baltisberger, B. Q. Sun, and A. Pines, J. Magn.
Reson., 1993, 102, 71)

schematic example of the behavior of spinning sidebands after
a shearing transformation is shown in Figure 5 for the two
cases 6, = 45° and 6, = 38.7°. The frequency axes in Figure
5(a) are in units of g, the actual spinning speed. The example
in Figure 5(b) is the familiar situation in 2D echo spectroscopy,
where the dephasing and refocusing times are equal (e.g. 2D J
spectroscopy). In this example even though the spectrum is
sheared, the sidebands remain aligned such that a projection
onto the «’; axis contains only sidebands at integer multiples
of 0.5Qg. In contrast, the example in Figure 5(c), where x; =
0.44 and x, = 0.56, describes a 2D echo experiment with
unequal dephasing and refocusing times. In this situation the
spinning sidebands are not aligned in «';, and consequently
a projection onto ' yields a fairly complicated sideband
pattern.

Simulated and experimental isotropic projections from the
87Rb DAS of RbClO,, demonstrating the sideband behavior for
various pairs of DAS angles, are shown in Figure 6. In each
isotropic 1D DAS spectrum the spinning sidebands appear at
integral multiples of x;lg and x,Qx and also at the sum and
difference frequencies of the integral multiples of x;{lz and

For list of General Abbreviations see end-papers
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Figure 6 Simulated and experimental 1D DAS spectra of *’RbClO;
for various rotor angle pairs (8;.8,) and fractions [x;.x]. All spectra
were obtained with a rotor frequency of €d}x = 6.4 kHz. The
quadrupolar coupling parameters of RbCIO, used in the simulations are
Cy=3.2 MHz and 7 = 0.1. (Adapted by permission of Academic Press
from P. J. Grandinetti, Y. K. Lee, J. H. Baltisberger, B. Q. Sun, and A.
Pines, J. Magn. Reson., 1993, 102, 71)

x8lz. The angle pair (37.78°, 79.19°) has an advantage that
%10k = %282 = 0.5 and a simple side band spacing of 0.5
is obtained. Of particular interest is the fact that the 1D DAS
spectrum for the (0°,63.43°) angle pair contains only spinning
sidebands at multiples of x,Qlx = 0.83Qx. The spinning side-
bands at x,Qx = 0.17Qx do not exist and thus the (0°,63.43°)
angle pair provides the highest effective spinning speed when
removing first- and second-order broadenings with DAS.

The (0°,63.43°) angle pair offers other advantages, in par-
ticular for cross polarization (CP) experiments (see also Cross
Polarization in Rotating Solids: Spin-1/2 Nuclei). Vega®***

x5
CP DAS CP DAS X5
(37.4°,79.2°) (0°, 63.4°) Mywufih
SIN=273 : | S/N =123.6 ‘

x5
DAS DAS x5
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S/IN=323 S/N =49.1
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Figure 7 DAS and CP DAS spectra of sodium pyruvate acquired
using the DAS angle pairs (37.38°,79.19°) and (0°,63.43°). With
(0°,63.43°) an improvement of 2.5 in S/N ratio is observed with CP
compared with the spectrum taken without CP. In addition, the CP
DAS experiment using (0°,63.43°) has an S/N ratio over 4.5-times that
of the CP DAS experiment using (37.38°,79.19°). (Reproduced by
permission of Taylor & Francis Ltd. from Baltisberger et al.25)




DYNAMIC ANGLE SPINNING 1773

(a)

0l U

W -3

1
9
7

4T /M 'E 40

N

) 2 501

L)

MWWWW ~604 x----- 71= 1.00 site .\\\
0.01 0.02 0.03 0.04 0.05 0.06

42T
iy 1/B} (T

-10 -30 -50 -70 -90
Frequency (ppm from 1M $’RbNO;)

Figure 8 (a) 8Rb DAS spectra of RbNOj collected at (a) 11.7T,
94T, 70T, and 42T. (b) Isotropic shifts of 87RbNO3 plotted versus
1/By? and fitted using a linear least-squares routine. The intercepts
and slopes are used to calculate the values of 8™ (ppm) and Cy(1 +
e /3)% (MHz), respectively. (Reproduced by permission of Academic
Press from Baltisberger et al.!%) ‘

has shown that it may be difficult or even impossible to obtain
efficient CP transfer of all sites in a multisite system when
spinning at the magic angle. This problem can be eliminated in
a DAS experiment by exploiting the time independence of the
spin eigenvalues when spinning at 0° (parallel) to the external
magnetic field. By performing the CP step while spinning at 0°
the full static CP intensity can be recovered.?® In Figure 7, the
decoupled DAS and CP DAS spectra of sodium pyruvate for
the (37.38°,79.19°) and (0°,63.43°) angle pairs illustrate the
significant increases in signal-to-noise ratio (S/N) that can be
obtained with the (0°,63.43°) angle pair.

From Tables 1 and 2 it is clear that the isotropic frequency
shifts of both the first-order chemical shift and the second-order
quadrupolar shift have different dependences on the external
magnetic field strength. These different dependences can be
exploited as a means of separating the isotropic chemical and
quadrupolar shifts. In Figure 8(a) the isotropic 3’Rb DAS spec-
tra of RbNO; measured at four different magnetic fields are
depicted. As shown in Figure 8(b), the isotropic resonance fre-
quency in ppm for each site is a linear function of 1/By?> with
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the isotropic chemical shift given by the interce6pt and the sec-
ond-order quadrupolar shift given by the slope.’

3 IMPLEMENTATION OF DYNAMIC ANGLE
SPINNING

Four variants of the DAS pulse sequence are depicted in
Figure 9. The simplest implementation is shown in Figure 9(a).
In this sequence, DAS can be viewed as a 2D exchange exper-
iment with a rotor reorientation during the mixing time and, as
in the 2D exchange experiment, an amplitude-modulated re-
sponse in f; makes it possible to obtain pure-absorption-mode
2D spectra using the hypercomplex or TPPI (time proportional
phase increment) approach to 2D data acquisition. The hyper-
complex data acquired with this sequence are Fourier-
transformed and phase-corrected in a manner similar to that
described elsewhere,22 with the only difference being the shear-
ing transformation described by equations (14) and (15).

In Figure 9(b), a different approach is taken that provides
pure absorption-mode lineshapes in addition to a \/2 increase
in the signal-to-noise ratio. In this approach, the coherence-
transfer echoes, which are formed because of the inhomo-
geneous broadenings intrinsic to the DAS experiment, are
time-shifted by an amount = with a 7 pulse to obtain whole
echo acquisition in #,, and thus a pure absorption mode 2D
spectrum. The length of 7 is a multiple of the rotor period, and
typically large enough so that the echo in #, begins at zero.
Only thep=0 — —1 — 0 — 1 — —1 pathway is selected in
this case. The complex 2D data acquired with this sequence
are processed in the same fashion as conventional phase-modu-
lated 2D data, with the only difference being a T-dependent
first-order phase correction of

(16)

to remove the phase modulation because of the time-shifted
echo, in addition to the shearing transformation described by
equations (14) and (15). When there is an inhomogeneous
broadening associated with the isotropic DAS dimension, both
pathways shown in Figure 9(b) can be acquired using the
hypercomplex approach for an additional \/2 increase in sig-
nal-to-noise ratio. This often occurs when DAS is applied to
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Figure 9 Pulse sequences, coherence transfer pathways, and minimal phase cycles for (a) dynamic angle spinning, (b) shifted echo dynamic angle
spinning, (c) MAS-detected dynamic angle spinning, and (d) MAS-detected shifted echo dynamic angle spinning
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Figure 10 (a) DAH-180 pulse sequence which produces sideband-free dynamic angle spinning spectra. The experiment is performed over N rotor
cycles with a rotor period of 7. A = N7,/10. (b) Comparison of the 87Rb spectra of Rb,SO, taken at 9.4 T at a spinning frequency of 1.8 kHz using
DAS (with sidebands) and using DAH-180 (sideband-free). (Reproduced by permission of Elsevier Science Publishers from Gann et al.®)

materials in which there is a continuous distribution of atomic
environments resulting in a continuous distribution of second-
order quadrupolar and isotropic chemical shifts.

Mueller et al.’® pointed out that extracting the quadrupolar
coupling parameters from the anisotropic DAS dimension can
be difficult when additional chemical and dipolar anisotropies
are present. Chemical shift and dipolar anisotropic broadenings
can be removed when spinning at 54.74°, leaving only quadru-
polar anisotropic broadening; 54.74°, unfortunately, is not a
solution of equations (11) and (12). The solution of Mueller et
al.'®® was to incorporate a second rotor reorientation into the
DAS sequence so that the final angle for detection is the magic
angle. This approach and its shifted echo variant are shown in
Figure 9(c) and Figure 9(d). With the evolution times defined
in Figure 9(c) and Figure 9(d) a shearing transformation is not
necessary to obtain the isotropic/anisotropic 2D DAS spectrum;
however, for the shifted echo experiment the phase correction
of equation (16) is still required. -

Using rotor-synchronized 7 pulses it is possible to eliminate
all sidebands in a DAS experiment using the DAH-180
sequence of Gann et al.,13 shown in Figure 10. Under this
pulse sequence all evolution at 63.43° that does not contribute
to ¢, evolution is refocused by spending equal time as +1 and
—1 coherences, while all ¢; evolution occurs only as —1 coher-
ences. This sequence has the advantage that the intensities of
the suppressed sidebands are completely transferred to the cen-
terband, unlike other sideband suppression techniques such as
TOSS.2® In contrast to the DAS sequences in Figure 9, the
DAH-180 sequence has a trade-off between sensitivity and res-
olution. DAH-180 is a constant time experiment, so in order to
increase the resolution a larger constant time is required which
then leads to increased intensity losses via T, relaxation pro-
cesses.

For list of General Abbreviations see end-papers

There are a few limitations of the DAS technique, most
notably being its current inability to refocus homonuclear dipo-
lar broadenings. This is a consequence of the storage pulses
which fail to store higher than first-rank coherences. These
broadenings are largest with abundant nuclei with high gyro-
magnetic ratios (e.g. 27A1, B, ...). Baltisberger et al.>® have
shown that homonuclear broadenings will be a function of the

sl b by e bl
400 200 0 -400 -200 -600
Frequency (ppm from H, 70)

Figure 11 (Top) The structure of L-alanine showing the differences
in hydrogen bonding on the two oxygen sites. (Bottom) Isotropic 170
(0°,63.43°) CP DAS spectrum of L-alanine at 7.04 T with the two
resolved centerbands for the two sites marked with arrows. (Adapted
by permission of the International Society of Magnetic Resonance from
S. L. Gann, et al.®®)
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Figure 12 (a) 70O 2D DAS spectrum of the bridging oxygen (Si—O-Si) resonances in K,8i40, glass, shown together with the isotropic lineshape,
and selected anisotropic cross sections correlated to specific frequencies in the isotropic lineshape. Because the glass contains a continuous
distribution of Si-O-Si bond angles, and the 70O isotropic frequency varies continuously with Si—O-Si bond angle, the bridging oxygen isotropic
linewidth in the glass is ~ 25-times wider than a bridging oxygen resonance in a crystalline silicate. Since the 7O anisotropic lineshapes for each
8i~0-Si angle are separated in a 2D DAS spectrum, the separated anisotropic lineshapes can be fitted to obtain the isotropic lineshape as a function
of the quadrupolar coupling parameters. With the help of experimental as well as ab initio based correlations between quadrupolar coupling
parameters and the $i~Q-Si bond angles, the isotropic lineshape can then be mapped into the Si—O-Si bond angle distribution for the glass. (b) The

Si~O-Si bond angle distribution in K,Si,0q glass derived from its 1’0 DAS spectra. (Adapted by permission of MacMillan Magazines Ltd. from

Farnan, et al.?%)

DAS angle pair and the (0°,63.43°) angle pair produces spectra
with the minimum broadenings; however, it does not eliminate
it. For certain nuclei it is possible to eliminate the homonuclear
dipolar broadenings using the isotopic depletion approach of
Youngman and Zwanziger.?’ By enriching glassy B,03; to 97%
in '°B, they obtained increased resolution by eliminating the
B dipolar broadenings from the ''B DAS spectrum.

Another limitation arises from the finite time required to
hop the rotor axis between the DAS angle pairs. When the
spin-lattice relaxation time T; is on the order or less than the
hop time (T; < Tnop) there will be significant losses in signal
intensity. For this reason integrated imtensities in DAS may not
accurately reflect the site populations.

4 APPLICATIONS OF DAS

Since its development DAS has been successfully applied to
a number of multisite crystalline compounds. Mueller and co-
workers'*!® have applied 70 DAS to a number of crystalline
silicates, resolving inequivalent bridging (Si—O-Si) and non-
bridging (Si-O-M) oxygens. Baltisberger et al.'® have applied
¥7Rb DAS to a number of crystalline inorganic rubidium salts
and obtained isotropic spectra along with correlated anisotropic
spectra from which quadrupolar coupling parameters could be
obtained. Gann et al.”® obtained the spectrum shown in Figure

11 where they could resolve the two crystallographically dis-
tinct oxygen sites of L-alanine in a (0°,63.43°) CP DAS
experiment.

Farnan et al.?® showed that DAS is particularly advan-
tageous when applied to amorphous samples (see also
Amorphous Materials) where a continuous structural distri-
bution results in a continuous distribution of anisotropic
lineshapes. In the 2D DAS spectrum these anisotropic line-
shapes can be separated according to their isotropic
frequencies, analyzed, and then used to help map the isotropic
lineshape into structural distributions. Figure 12(a) depicts a
2D 70 DAS spectrum of the bridging oxygen (Si—O-Si) res-
onances in K5Si40q glass. In this case the Si—~O-Si bond angle
distribution in Figure 12(b) was derived from the 2D DAS
spectrum.

5 RELATED ARTICLES

Amorphous Materials; Double Rotation; Line Narrowing
Methods in Solids; Magic Angle Spinning; Magic Angle Turn-
ing & Hopping; Multidimensional Spectroscopy: Concepts;
Quadrupolar Interactions; Quadrupolar Nuclei in Glasses;
Quadrupolar Nuclei in Solids; Sideband Analysis in Magic
Angle Spinning NMR of Solids; Variable Angle Sample Spin-
ning,.
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1 INTRODUCTION

The proper treatment of a spin subject to two or more non-
commuting interactions is a familar problem in nuclear
magnetic resonance. In practice, various interactions usually
differ markedly in magnitude, which enables one to choose the
eigenfunctions of the dominant term as a zeroth-order approxi-
mation. (Throughout this discussion, the Zeeman interaction is
considered dominant. Hence, the high-field approximation
obtains). The effect of lesser interactions can be treated in the
context of standard perturbation theory. A classic example is
the case of a spin under the influence of a laboratory-fixed Zee-
man interaction and a static, molecule-fixed quadrupole
interaction. However, in certain situations, the first-order cor-
rection vanishes identically and it may be necessary to consider
effects derived from higher-order perturbation theory. A well-
known example is the treatment of the 1 — —1 central tran-
sition of a half-integer spin subject to both Zeeman and
quadrupolar interactions.

In contrast, when motions effectively average molecule-
fixed interactions, first-order effects associated with quadrupole,
dipole-dipole, or anisotropic electronic shieldings disappear
completely in spherically symmetric or isotropic media. Never-
theless, if the averaging motions are slow on the timescale
associated with reciprocal Larmor frequencies, a second-order
shift of the Zeeman energy occurs even though first-order cor-
rections are quenched.




