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Abstract

Two-dimensional magic-angle spinning (triple quantum, single quantum) correlation pulse sequences and phase
cycles based on the technique of Frydman and Harwood for the reconstruction of the isotropic spectrum of
half-integer spin quadrupolar nuclei broadened to second-order are described. These sequences provide pure
absorption mode two-dimensional lineshapes and increased sensitivity. Experimental examples on spin [=3/2
(*Rb in RbNO;) and 7=5/2 (*’Al in NaSi;AlOg) are presented. The isotropic chemical shift and quadrupolar
coupling parameters could be obtained from a simple analysis of the triple quantum filtered single quantum

magic-angle spinning cross-sections.

Keywords: Isotropic spectrum; Multiple quantum; Pure absorption mode lineshape; Quadrupolar nucleus

1. Introduction

The recent discovery by Frydman and Har-
wood [1] that an isotropic spectrum of a
quadrupolar nucleus broadened to second-order
can be obtained from a skew projection of a
two-dimensional magic-angle spinning (MAS)
(triple quantum, single quantum) correlation
spectrum has opened up exciting new possibilities
in solid-state NMR. The apparent difficulty in
this new technique lies in the excitation of triple
quantum coherences in a system where the first-
order quadrupolar interaction dominates the ro-

" Corresponding author.

tating frame Hamiltonian. In the originally pro-
posed two-dimensional MAS sequence of Fryd-
man and Harwood [1] excitation of the triple
quantum coherence was accomplished using two
pulses separated by a time delay on the order of
the inverse of the quadrupolar splitting. After
free evolution as triple quantum coherence, this
coherence was transferred into single quantum
coherence with a single pulse.

In this paper we present two new two-dimen-
sional MAS sequences based on the triple quan-
tum excitation schemes of Vega and Naor [2] that
replace the two-pulse triple quantum excitation
sequence with a single pulse. In 1984 Vega and
Naor [2] showed, in cases where the r.f. ampli-
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tude is weak with respect to the first-order
quadrupolar interaction, that the triple quantum
coherences can be more efficiently created or
indirectly detected in spin 3/2 systems with a
single radio frequency pulse. In addition, our new
two-dimensional MAS sequences are designed to
provide the two-dimensional correlation with pure
absorption mode two-dimensional lineshapes.
Pure absorption mode two-dimensional line-
shapes facilitate the analysis of lineshapes in the
anisotropic dimension to extract quadrupolar ten-
sor information. Although this two-dimensional
MAS experiment suffers from the constraint that
not all crystallite orientations are uniformly ex-
cited, and thus the anisotropic lineshapes in the
second dimension are distorted, our results sug-
gest that in some situations those distortions are
minimal and that this approach can be used to
obtain quadrupolar tensor parameters.

Our first approach combines the two-pulse se-
quence of Vega and Naor with the traditional
hypercomplex method to obtain phase separa-
tion. This two-pulse sequence was also recently
used by Fernandez and Amoureux [3] to increase
the sensitivity in the Frydman and Harwood ex-
periment, however, in their application the hyper-
complex approach to pure absorption mode spec-
tra was not employed. Our second approach uses
the shifted-echo method [4], recently developed
for dynamic-angle spinning [5-17], to obtain phase
separation. The shifted-echo method has the ad-
vantage of an additional 2!/? improvement in
signal-to-noise when compared to the hypercom-
plex or time proportional phase increment (TPPI)
approach.

2. Pulse sequences

While Vega and Naor considered only the case
of a single crystal, the case of a polycrystalline
sample is considerably more complicated since
there exists no single pulse length that excites all
crystallites equally. In general, in the limit where
the r.f. field strength, w, is weak with respect to
the orientation dependent first-order quadrupo-
lar interaction, wqA4,(8, ¢), the nutation fre-
quency of an n-quantum coherence during a pulse

is proportional to w}/{wqA,(8, $)1" ' [2,18,19],
where 8 and ¢ are the angles between the princi-
pal axis system of the quadrupolar interaction
and the external magnetic field. Therefore, the
optimal pulse length will depend on the relative
orientations and size of the quadrupolar interac-
tions, which of course, will be specific to the
sample under consideration. In this paper we do
not attempt to determine the pulse lengths for
optimum sensitivity. We simply set the lengths of
triple quantum excitation and detection pulses in
both sequences to an integer multiple (typically
1-3 times) of the 27 pulse length for the central
transition. This has the effect of reducing the
single quantum coherence amplitude during ¢,
evolution.

2.1. Hypercomplex sequence

The traditional approach for obtaining a pure
absorption mode two-dimensional lineshape is to
separate the signals arising from the echo and
anti-echo pathways. This can be done using either
TPPI or the hypercomplex approach. In this pa-
per we will choose the latter. In the hypercom-
plex approach, two phase cycles are used to pro-
duce two signals that are linear combinations of
the echo and anti-echo signal.

The two pulse sequence is shown in Fig. 1. For
spin 5/2 the echo pathway is p=0—-3 - —1,
while the anti-echo pathway is p=0—» -3 —
— 1. For spin 3 /2 these assignments are reversed.
In the following discussion we will treat the spin
5/2 case. The treatment will apply equally as well
to the spin 3 /2 case keeping in mind the assign-
ment reversal.

Selecting the echo and anti-echo pathway is
accomplished using the pulse phase relationship
[20]:

br= 3¢, +4¢, (1)

Assuming that the receiver detects only coher-
ences at —1, we phase cycle the first pulse
through increments of A¢, = 360°/6 to eliminate
all the Ap, values in parentheses below:

Ap;=-(=35), (=4, =3, (=2, (=D,
(0), (1), (2),3,(4), (5), -~ (2)
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Fig. 1. Two-pulse magic-angle spinning isotropic reconstruc-
tion sequence for quadrupolar nuclei broadened to second-
order. Pulse lengths B; and B, are set to an integer multiple
(typically 1-3 times) of the 27 pulse length for the central
transition in order to reduce the single quantum coherence
amplitudes during ¢, evolution.

This leads to the phase cycle:

¢, =0" o60° 120°  180° 240° 300°
¢, =0
=0 180°

(3

which generates the signal Sy(¢,, 1,). Sx(¢, t,)
contains a linear combination of the echo and
anti-echo signals. The echo and anti-echo signals
can be separated by phase shifting the first pulse
by 90°/| p|, where p is the order of the coher-
ence in the ¢, evolution period, in this case
| p| = 3. This leads to the phase cycle:

¢, =30° 90° 150°  210° 270° 330°
¢ = 0°
dr=0 180°

(4

which generates the signal Sy(¢, #;). From
Sx(t;, ¢,) and Sy(z,, t,) we construct the echo

and anti-echo signals, Sp(t,,7,) and S,(¢,, 1,)
respectively, according to:
Se(tys 13) = Sx(ty, 15) =18y (¢, 12) (5)
Saltys 1) =Sx(11, 1) +iSy(1y, 1) (6)
To eliminate the need for a skew projection a
shearing transformation may be applied so that
the isotropic spectrum can be obtained from a
simple projection of the final 2D spectrum. This

transformation can be implemented by applying a
t,-dependent first-order phase correction:

E(1], @) = e IS (1), w;)

) 7

A ) = e 805, (1), ) )
where

o1y, wy) =kw,t, (8)

prior to the final Fourier transform with respect
to t\. Here k =7/9 for the case of /=3/2 and
k =19 /12 for the case of I =15 /2 (see Appendix).
After this phase correction the dwell time in #] is
increased from the ¢, dwell time by a factor of
k + 1. Additional zero- and first-order phase cor-
rections may be needed to phase the f,=0
cross-section of both the echo and anti-echo sig-
nals into pure absorption mode real spectra. The
pure absorption mode 2D spectrum S(o', @)) is
then obtained by Fourier transforming Sg(t], w’)
and S,(z], o) with respect to ¢| and then com-
bining according to

S(w), o)) = Sg(], o)) + SH(— o), @) (9)
After the shearing transformation, the position
of the resonances (in ppm) in the isotropic pro-

jection for the spin 7= 3/2 case (see Appendix)
is given by:

6 2 2
00 = ngwL 1X810 ‘:—g 5 1) (10)
and for the spin I=5/2 case (see Appendix) by:
Q‘5°=—£Acr—8xw6w—zg T’—24—1 (11)
31 93 wil\3

where Ao is the difference between the iso-
tropic chemical shift and the reference, wg=
67C,/21(21 — 1), w, is the Zeeman frequency,
and C, and 7 are the quadrupolar coupling pa-



76 D. Massiot et al. / Solid State Nuclear Magnetic Resonance 6 (1996) 73-83

rameters. If the spectrum is to be referenced to a
frequency other than the r.f. carrier frequency
(i.e. zero is not defined in the middle of the
spectrum), then the reference offset used in the
single quantum dimension must be multiplied by
a factor of (3 +k)/(1+k) for the I =3/2 case
and (=3 +k)/(1 + k) for the I =5/2 case when
used in the isotropic dimension.

2.2. Shifted echo sequence

Another approach to obtaining a pure absorp-
tion mode two-dimensional lineshape is the
shifted-echo approach [4]. This approach was first
applied to dynamic-angle spinning (DAS), and is
limited to systems exhibiting significant inhomo-
geneous broadenings as are typically found in
solid-state NMR. In the shifted echo approach
we add an additional 7 pulse in the sequence to
shift the coherence transfer echo into the ¢, evo-
fution time so that we can obtain the whole echo
for ¢, =0. Using the time shift theorem, we can
approximately extend the lower limit of the
Fourier integral in 7, to — and climinate all
dispersion-mode terms from our spectrum in ¢,.

The shifted-echo pulse sequence is shown in
Fig. 2. As in the previous section we define the
echo pathway for spin 5/2 as p=0—-3->1—
—1, while the anti-echo pathway is p=0— —3
—-1— —1. Again, for spin 3/2 these assign-
ments are reversed. Selecting the echo pathway is
accomplished using the pulse phase relationship:

dr= -3, +2¢,+2¢; (12)

and selecting the following coherence transfers
for the first and third pulse,

Apy = (=5),(=4,(-3), (-2, (- D),
(0), (1), (2),3, (4), (5),
Aps= -+ (=6),(=5),(=4),(-3), -2,
(=1),(0), (1), (2), (3), (4), -
(13)

Cycling the first pulse phase through increments
of A¢p, = 360°/12 to eliminate all the Ap, values
in parentheses above, and cycling the third pulse
phase through increments of A¢;=360°/8 to
eliminate all the 4 p, values in parentheses above
leads to the echo phase cycle:

¢, =0° 300 60° 90°  120° 150°

b, = 0°

¢,=0° 0° 0° 0° 0° 0°
45° 45° 45° 45° 45° 45°
90° 90°  90° 90° 90° 90°
135°  135° 135° 135° 135° 135°
180° 180° 180° 180° 180° 180°
225°  225° 225° 225° 225° 225°
270°  270° 270° 270° 270° 270°
315°  315° 315° 315° 315° 315°

dr=0° 270° 180° 90° 0O° 270°
90° 0° 270° 180° 90° 0°
180° 90° 0° 270°  180° 90°
270° 180° 90° 0O° 270°  180°

180° 210° 240° 270° 300° 330°
0° 0° 0° 0° 0° 0°
45°  45°  45°  45° 450 45°
90°  90° 90° 90° 90°  90°
135°  135° 135 135° 135° 135°
180° 180° 180° 180° 180° 180°
225° 225° 225° 225° 225° 225° (14)
270°  270° 270° 270° 270° 270°
315°  315° 315 315° 315° 315°
180° 90° 0° 270° 180° 90°
270° 180° 90° 0Q° 270°  180°
0° 270°  180° 90° 0° 270°
90° 0° 270° 180° 90° 0O°
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Fig. 2. Three-pulse shifted-echo magic-angle spinning isotropic
reconstruction sequence for quadrupolar nuclei broadened to
second-order. As in the two-pulse experiment the pulse lengths
B, and B, are set to an integer multiple (typically 1-3 times)
of the 27 pulse length for the central transition in order to
reduce the single quantum coherence amplitudes during ¢,
evolution. The last pulse is adjusted to be a selective 7 pulse
on the central transition. The length of 7 is a multiple of the
rotor period, and typically half the width of the echo, so that
the signal in ¢, begins at zero.

This phase cycle alone will provide pure absorp-
tion mode lineshapes for spin 5 /2.

Selecting the anti-echo pathway 1s accom-
plished using the pulse phase relationship:

¢R=3¢1”4¢2+2¢3 (15)

and selecting the following coherence transfers
for the first and third pulse,

Apy= (=5, (=4, =3, (-2), (=1, (0),
(1).(2), (3), (4, (5), -~
Apy= - (=6),(=5),(-4),(-3), -2,

(=1), (0), (1), (2), (3), (4), -+
(16)

Cycling the first pulse phase through incre-
ments of A¢, =360°/12 to eliminate all the Ap,
values in parentheses above, and cycling the third
pulse phase through increments of A¢; = 360°/8
to eliminate all the Ap, values in parentheses
above leads to the anti-echo phase cycle:

¢, =0 30° 60°  90°  120° 150°

¢, =0°

¢,=0° 0° 0° 0° 0° 0°
45° 45°  45°  45° 45° 45
90° 90° 90° 90° 90° 90
135°  135° 135 135° 135° 135°
180° 180° 180° 180° 180° 180°
225°  225° 225° 225° 225° 225°
270° 270°  270°  270° 270° 270°
315° 315 315° 315° 315 315°

Pr=0° 90°  180° 270° 0° 90°
90°  180° 270° 0° 90°  180°
180°  270° 0° 90°  180° 270°
2700 0° 90°  180° 270° 0O°

180° 210° 240° 270° 300° 330°
0° 0° 0° 0° 0° 0°

45° 45° 45° 45° 45°  45°
90° 90° 90° 90° 90°  90°
135° 135 135° 135° 135° 135°
180° 180° 180° 180° 180° 180°
225° 2250 225 225° 225° 225° (17)
270°  270° 270°  270°  270°  270°
315°  315° 315° 315° 315° 315°
180° 270° 0° 90°  180° 270°
270° 0° 90°  180° 270° 0°

0° 90°  180° 270° 0° 90°
90 180° 270° 0O 90 180J




This phase cycle alone will provide pure absorp-
tion mode two-dimensional lineshapes for spin
3/2.

Just as in the case of hypercomplex shifted-
echo DAS, there are certain situations where an
additional factor of 2'/? enhancement in the sig-
nal-to-noise ratio can be obtained by combining
phase separation in ¢, with shifting the echo in
t,. As in the hypercomplex sequence of the previ-
ous section the echo and anti-echo phase cycles
can be separated into halves. The first half gener-
ates a signal Sy(¢,, ¢,), which has the phase cy-
cle:

o, =0 60°  120° 180° 240° 300°

b, =0°

by =0° 0° 0° 0° 0° 0°
45°  45°  45°  45° 45° 45°
90°  90° 90° 90° 90° 90°
135 135° 135 135° 135° 135°
180° 180° 180° 180° 180° 180°
225°  225° 225° 225° 225° 225°
270°  270°  270° 270° 270° 270°
315°  315° 315° 315 315° 315°

br=0° 180° 0O° 180° 0 180°
90°  270° 90°  270° 90°  270°
180° 0° 180°  0° 180° 0°
270° 90°  270° 90°  270° 90°

(18)
and the second half generates a signal S (¢, t,),
which has the phase cycle:

¢, =30° 90°  150° 210° 270° 330°

¢, =0

¢,=0° 0° 0° 0° 0° 0°
45° 45°  45°  45° 45° 45°
90° 90°  90° 90° 90°  90°
135°  135° 135 135° 135° 135°
180° 180° 180° 180° 180° 180°
225°  225° 225° 225° 225° 225°
270°  270°  270° 270° 270° 270°
315°  315° 315° 315° 315° 315°

dr=0 180° 0° 180° 0° 180°
90°  270° 90°  270° 90° 270
180°  0° 180° 0° 180° 0°
270°  90°  270° 90°  270° 90°

(19)

From S,(¢,, t,) we construct Sg(¢,, t,) and
S.(t,, t,) according to Eqgs. (5) and (6).

The length of 7 is a multiple of the rotor
period, and typically half the width of the echo,
so that the signal in ¢, begins at zero. The com-
plex two-dimensional data acquired with this se-
quence are processed in the same fashion as in
the last section, with the only difference being a
7-dependent first-order phase correction of

o(1, w,) =w,T (20)

to remove the phase modulation because of the
time-shifted echo, and the ¢,-dependent first-
order correction of Eq. (8) to perform the shear-
ing transformation. Both are applied after the
Fourier transform with respect to ¢,.

A potential difficulty with this approach is that
7 must be adjusted to be large enough to obtain
the whole echo signal. If the homogeneous broad-
enings, e.g. A, are so large that

e <122 (21)

then the hypercomplex sequence of Fig. 1 should
be the preferred approach. Truncating the echo
on either side of its maximum will add
dispersion-mode components into the 2D spec-
trum. In practice, however, some truncation of
the echo tail can be tolerated since this distortion
is often no worse than the distortions obtained
from acquisition dead times in the sequence of
Fig. 1.

Before the shearing transformation the Zee-
man and chemical shift offsets from the carrier
frequency during ¢, of all triple quantum coher-
ences are shifted away from zero by a factor of
three. Therefore, even if the triple quantum spec-
trum is bandwidth limited to approximately the
same width as the single quantum spectrum, there
may be aliasing of resonances in w, if the spec-
tral width used in ¢, is also used in ¢;. One
expensive solution to this problem is to use a
shorter dwell time in ¢, because this results in
unnecessarily longer experiments. A simple solu-
tion is to use the minimum spectral width in ¢,
needed for the triple quantum spectrum band-
width, and then apply a first-order phase correc-
tion to the ¢, time-domain to shift the triple
quantum spectrum back into the spectral width.
A related approach is to employ TPPI[21] to the
first pulse in the sequence to shift the triple
quantum resonances back into the spectral width.
That is, shift all the phases of the first pulse in
the sequence by Af2¢, /3, where A(2 is the shift
needed to move the resonances back into the
spectral width.
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3. Experimental

RbNO, was obtained commercially, kept in a
dry atmosphere, and used without further purifi-
cation. The natural albite sample, NaSi;AlO,
was characterized by X-ray diffraction and is of
Amelia type (JCPDS 20-554). ¥ Rb spectra were
referenced relative to aqueous 1M RbNO,; as an
external frequency standard. “’Al spectra were
referenced relative to aqueous 1M Al(NO,), as
an external frequency standard. All experiments
were performed on a Bruker MSL spectrometer
with a 7 T magnet and a commercial MAS (5 mm
rotor) probe. Spinning speeds were typically be-
tween 10 and 12 kHz.

For the two-pulse *’Rb experiment on RbNO,
a 32 us increment was used for both ¢, and ¢,
with 240 X 256 hypercomplex ¢, X ¢, points. Both
dimensions were zero-filled to 512 points. For the
two-pulse YAl experiment on NaSi;AlOg a 60 us
increment was used for both ¢, and ¢, with

50 @

-40

T LAARASARARE L T T T
-20 -30 -40 -50 -60 -70
MAS Dimension (ppm from 1M RbNO3)

Isotropic Dimension (ppm from 1M RbNO3)
)
e
g/w_l

128 x 256 hypercomplex ?, Xt, points. The f,
dimension was zero-filled to 256 points.

For the three-pulse 8Rb experiment on
RbNO, an 80 us increment was used in ¢, and a
60 us increment was used in ¢, with 105 X 256
hypercomplex ¢, X t, points. The ¢, dimension
was zero-filled to 256 points. For the three-pulse
YAl experiment on NaSi;AlOg an 60 us incre-
ment was used in both ¢, and ¢, with 128 X 256
hypercomplex ¢, X ¢, points (spectrum not
shown). The ¢, dimension was zero-filled to 256
points.

In all experiments the pulse duration of the
triple quantum excitation and detection pulses,
B, and B,, were identical and were taken as the
liquid 7 duration (typically 4-5 us), which gave a
good signal with minimum contribution of signal
quantum coherences during ¢;. In the shifted
echo experiments the last pulse was adjusted to
be a selective 7 pulse on the central transition.
The length of 7 was a multiple of the rotor

Experimental Simulation

‘\\ s

-~ T

5 25 35 45 55 65 75 15 25 35 45 S5 65 15
Frequency (ppm from 1M RbNO3)

Fig. 3. On the left is the two-dimensional shifted echo (triple quantum, single quantum) 8Rb MAS spectrum of RbNO, after
shearing. The contour lines are drawn every 5% starting at a level of 5% and ending at 95% of the maximum point in the spectrum.
On the right are the triple quantum filtered single quantum MAS cross-sections for each of the three crystallographicaily distinct

sites in RbNO; along with “best fit” simulations.
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Table 1
Comparison of 8Rb NMR parameters of RbNO,, obtained by fitting the triple quantum filtered single quantum MAS
cross-section lineshapes, with magic-angle detected dynamic-angle spinning experiments

Site This work Ref. [12]
852 (ppm) 8iv(pPm) C(MHz) 7 85(ppm) C(MHz) n

1 -49.0 ~-274 1.68 0.2 -26.2 1.83 0.12
2 —44.7 —28.5 1.94 1.0 -26.8 2.07 1.0
3 -571 -313 1.72 0.5 -309 1.85 0.48
period, and typically half the width of the echo, transforming with respect to ¢,, a shearing trans-
so that the signal in ¢, begins at zero. formation using the f,-dependent phase of Eq.

All spectra were processed according to the (8) is applied, in addition to the usual zero- and
same procedures described for DAS[4]. For hy- first-order phase correction needed to phase the
percomplex processing, the echo and anti-echo t, =0 spectra of both the echo and anti-echo
2D signals were obtained from the hyper-complex spectra into pure absorption mode. In the case of
data using Egs. (5) and (6). Both the echo and the shifted-echo experiment the final Fourier
anti-echo signals are processed in paralle]l before transform with respect to ;| gives the pure ab-
combining the final two-dimensional Fourier sorption mode two-dimensional spectrum. In the
transforms as described by Eq. (9). Prior to case of the hypercomplex experiment after the
Fourier transforming, the two-dimensional time final Fourier transform with respect to ] for
domain data are apodized with a shifted Gauss- both the echo and anti-echo spectra, the anti-echo
ian that follows the echo tops. After Fourier two-dimensional spectrum is reversed in the

(b) §

(a)

T T T T 1 T T T

70 60 50 40 30
50 3 MAS Dimension (ppm from 1M AI(NO3)3)

MAS

-20 4 l
——me
t

T T T T T T T T T T T T

70 60 50 40 30
MAS Dimension (ppm from 1M AI(NO3)3)

Isotropic Dimension (ppm from 1M Al(NO3)3)

r v T T T T g T

70 60 50 40 30
MAS Dimension (ppm from 1M ANO3)3)

Fig. 4. (a) The two-dimensional hypercomplex (triple quantum, single quantum) 2Tl MAS spectrum of NaSi,AlQy after shearing.
The contour lines are drawn at levels of 5, 10, 20, 50, 80 and —95% of the maximum point in the spectrum. (b) The triple quantum
filtered single quantum MAS cross-section for NaSi;AlOy along with “best fit” simulation. (c) The one-puise single quantum MAS
spectrum along with “best fit” simulation. Other than some minor distortion in the extreme shoulders, the spectrum in (b) is
remarkably similar to (c).
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dimension and added to the echo two-dimen-
sional spectrum to obtain the pure absorption
mode two-dimensional spectrum.

Anisotropic lineshapes were fit using a least
squares procedure [22,23] to obtain the quadru-
polar and chemical shift parameters.

4. Results

As an example of a spin 7 =3/2 case we have
used *'Rb in RbNO;. On the left in Fig. 3 is the
pure absorption mode (triple quantum, single
quantum) shifted-echo two-dimensional MAS
spectrum of RbNQ; after shearing. RbNO; has
three crystallographically distinct sites [24] that
are all resolved in the isotropic dimension. The
integrated intensities of all three peaks in
19:14:17 in close agreement with the 1:1:1
ratio obtained from the crystallographic struc-
ture. On the right in Fig. 3 are the triple quantum
filtered single quantum MAS cross-sections for
each of the three crystallographically distinct sites
in RbNO; along with “best fit” simulations, ob-
tained using the fitting constraint of the observed
isotropic position given by Eq. (10). One might
have expected strong distortions in the anisotropic
lineshapes due to the triple quantum filtering.
However, the lineshapes in these cross-sections
are remarkably close to the expected anisotropic
lineshapes assuming equal excitation of all crys-
tallite orientations. Other than some minor base-
line distortions due to receiver deadtime, identi-
cal lineshapes are obtained with the two-pulse
hypercomplex sequence (spectrum not shown).
The “best fit” parameters obtained from the
anisotropic lineshapes using the isotropic position
as an additional constraint are given in Table 1
along with the previously obtained parameters
using magic-angle detected dynamic-angle spin-
ning experiments [12].

As an example of a spin / =5/2 case we have
used “'Al in NaSi;AlOq. Fig. 4 shows the two-di-
mensional pure absorption mode (triple quantum,
single quantum) MAS spectrum of albite after
heating. Other than a minor distortion of the
extreme shoulders, the triple quantum filtered
single quantum MAS cross-section is remarkably
similar to the simple one-pulse MAS spectrum
also shown in Fig. 4. Similar NMR parameters
are obtained from fitting these lineshapes, and
are given in Table 2.

5. Summary

Based on the isotropic reconstruction experi-
ment of Frydman and Harwood we have devised
two new approaches for obtaining pure absorp-
tion mode two-dimensional (triple quantum, sin-
gle quantum) correlation spectra of second-order
broadened quadrupolar nuclei.

Combining the two-pulse triple quantum exci-
tation and detection sequence of Vega and Naor
with the traditional hypercomplex approach and
a shearing transformation we obtain a pure ab-
sorption mode two-dimensional correlation be-
tween the isotropic site-resolved spectrum and
the triple quantum filtered $Rb MAS spectrum
for the three sites of RbNO,. Application of this
technique to the *’Al resonance in albite is also
demonstrated. In a second sequence we use the
shifted echo approach of DAS and add an addi-
tional m-pulse after the two-pulse triple quantum
evolution in order to time shift the coherence
transfer echoes into the r, acquisition window to
obtain whole echo acquisition, and thus a pure
absorption mode two-dimensional spectrum with
a V2 improvement in sensitivity. Application of
this technique is also demonstrated on *'Rb in
RbNO,.

Table 2 .

A1 NMR parameters of NaSi; AlOg obtained by fitting the triple quantum filtered single quantum MAS cross-section lineshapes
Technique 8255(ppm) 85, C,(MHz) "

MAS — 64.5 322 0.66

3Q filtered MAS —384 64.7 3.25 0.68
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In all cases we were able to obtain triple
quantum filtered MAS lineshapes that were re-
markably close to simple one-pulse MAS line-
shapes where all crystallites are excited equally.
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Appendix A. Calculation of isotropic shifts

The time averaged second-order quadrupolar
(m — —m transition) NMR frequency of a coher-
ence of order p = 2m while spinning at an angle
B with respect to the external magnetic field is
given by:

2
wg 4
n =-— C'chosBV
P w, L:%ZA L(P)Fu( ) 2L +1

where py,=1/V6, py.,=n/6,{Lm| 1l 1, m,
m,) is the Clebsch-Gordon coefficient, and
Y, (6, ¢) is the spherical harmonic, where 6 and
¢ are the angles between the principal axis sys-
tem of the quadrupolar interaction and the rotor
frame. Values for the coefficients C}(p) are given
in Table Al.

In the experiment of Frydman and Harwood
[1] the isotropic frequency will be the weighted
average of the two frequencies. The weights are
determined by the ratio of the C}( p) coefficients.
This insures that the average fourth-rank aniso-
tropic frequencies are all zero. Similar to DAS [9]
we define k = [ Ci(+3)/Cj(— 1] so

. 1 ) k )

000 = mﬂ?? + mn(lsf) (A4)

Next we can substitute the isotropic chemical
shifts and quadrupolar second-order isotropic
shifts associated with the two transitions. The

single quantum (central transition p = —1 coher-
ence) frequency (in ppm) is given by:

(is0) wé x 108 .
020 =Ao——;2—C0(—l)aoo (AS)

0

where Ao = oy, — 0, and gy, = (1/6V5 X(1%/3)

L

+ 1). The triple quantum (p = +3 coherence)

X Y, ..
n:Z_ LUL" k0, $) (A1) transition frequency (in ppm) is given by:
) w? X 10°
where 009 = F3do~ “2—Cl(£3)ay  (A6)
. (L0122 k—k) g
C(p)=2p E k Therefore for I =3/2, where k =7/9, using the
k=12 p=0—- -3 - —1 pathway the two-dimensional
2 . . . .
D k MAS isotropic frequency (in ppm) is:
XI(HI)_E/Z_Z] (A2) i 9p q 7y( PP

006 = — % 09 + 16 X 0oy (A7)

P,(x) is the Lth rank Legendre polynomial, 16 1
, 17 1x10° wd [ n?
o= 2 (Lnl|22kn—k)pypy v (A3) 06 = Ag + —|=+1 (A8)
k=024 ‘ 8 8 wp\3
Table Al
Spin and transition dependent part of the second-order quadrupolar NMR frequency
Coefft. 1=3/2 I=5/2
p=1 p=3 p=1 p=3 p=5

Clp) -3/v5 9/v5 -8/Y5 —6/V5 50/v5
Cclp) 12/Y14 -0 32/V14 60,14 -20/y14
Cilp) 27/Y70 -21/Y70 72/V70 114/y70 —150/y70

Changing the sign of the coherence level also changes the sign of the coefficient.
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and for / =5/2, where k = 19/12, using the p =
0 - +3 > -1 pathway the two-dimensional
MAS isotropic frequency (in ppm) is:

12 19
0s0) — m X (5 + I X U0 (A9)
(5 17A 8 x 10°¢ wé n2 :
) = _ _Ag— —— Q[ Al0
3177 793 w2 |3 (A10)
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