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Abstract

The theory of rotary resonance in multiple-quantum magic-angle spinning (MQMAS) experiment is presented.

The rotary resonance effect can enhance the efficiency of MQMAS experiment for high-resolution NMR spectra of

half-integer quadrupolar nuclei [J. Chem. Phys. 114 (2001) 4618]. Using a spin-1/2 formalism and Floquet theorem,

the spin dynamics of a spin-3/2 under rf irradiation and magic-angle sample spinning is solved analytically in a

doubly rotating frame. The results show an oscillatory behavior of MQ excitation with nulls at x1 ¼ nxr=2, where x1

represents the rf field strength and xr is the spinning frequency. Efficient MQ excitation occurs between these nulls

and MQ conversion peaks at x1 ¼ nxr. The origin of the rotary resonance phenomenon is related to frequency shift

of a general two-level system under a randomly modulated periodic perturbation. � 2002 Elsevier Science B.V. All

rights reserved.

1. Introduction

Recently Vosegaard et al. [1] have discovered a rotary resonant phenomenon in exciting and converting
multiple-quantum (MQ) coherence of half-integer quadrupolar nuclei. Under fast magic-angle sample
spinning, the excitations of MQ coherence can be greatly enhanced when spinning frequency xr and rf field
strength x1 are between adjacent rotary resonance conditions x1 ¼ nxr=2. The conversion of MQ coher-
ence to central transitions can be enhanced with x1 ¼ nxr. The discovery of this rotary resonance effect has
lead to the FAster Spinning gives Transfer Enhancement at Rotary resonance (FASTER) experiment that
improves the efficiency of multiple-quantum magic-angle spinning (MQMAS) experiment to obtain high-
resolution NMR spectra of half-integer quadrupolar nuclei [1]. The FASTER experiment has several ad-
vantages compared to other MQMAS pulse schemes [2–8]: it avoids interferences between fast sample
spinning and rf irradiation that other pulse schemes may have [9] and it requires low x1 making it par-
ticularly suitable for low-c nuclei.
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The rotary resonance effect was first discovered by a numerical study followed immediately by experi-
mental demonstration [1]. The origin of the resonance effect, however, has not yet been fully understood
because of the complexity of the spin dynamics. For quadrupolar nuclei, the spin dynamics under rf ir-
radiation is complicated for two reasons: first, nuclei with spin > 1=2 have more than two energy-levels
making the problem of a time-dependent Hamiltonian difficult to solve; second, quadrupolar interactions
usually are two-orders of magnitude larger than typical spinning frequencies. Modulation of large quad-
rupolar couplings by sample rotation makes the application of average Hamiltonian theory difficult even at
high-spinning speed.

In this Letter we present a theoretical study of the MQMAS rotary resonance phenomenon. First the
multilevel system of a model spin-3/2 is separated into two two-level subsystems represented by spin-1/2
Hamiltonians. Floquet theory is then applied in a doubly rotating frame solving the time evolution of the
spin-1/2 Hamiltonians. The combination of spin-1/2 formalism and Floquet theorem leads to an effective
Hamiltonian that provides a complete analytical solution to the spin dynamics of quadrupolar nuclei. As
the rotary resonance phenomenon has already been studied thoroughly by numerical simulations, this
Letter focuses on the theoretical aspect especially the origin of the resonance phenomenon. It will be shown
that the rotary resonance is related to a randomly modulated periodic perturbation in a general two-level
system.

2. Spin-1/2 formalism

We consider a Hamiltonian that includes only the first-order quadrupolar interaction and the rf spin
interaction

HðtÞ ¼ qðtÞð3S2
z � S2Þ=6þ x1Sx: ð1Þ

The quadrupolar coupling frequency qðtÞ is modulated by sample rotation. The phase and amplitude of the
rf irradiation are assumed constant. Time evolution of an observable Q follows:

hQi ¼ Tr½Q 	 UðtÞrð0ÞUðtÞ�1
; ð2Þ
where rð0Þ is the initial density operator and UðtÞ is the time propagator of the Hamiltonian. The density
and observable operators for two-dimensional MQMAS experiment are rð0Þ ¼ 3Tz þ Cz, Q ¼ Ty for MQ
excitation and rð0Þ ¼ Tþ, Q ¼ C� for MQ conversion. Here T and C represent the triple-quantum and
central transition spin operators, respectively.

For a spin-3/2, the four-level Hamiltonian can be separated into two two-level subsystems through a
rotation

R ¼ 1ffiffiffi
2

p
1 0 0 1
0 1 1 0
0 1 �1 0
1 0 0 �1

0
BB@

1
CCA

that mixes pairs of base states with opposite signs ðjmi  j � miÞ=
ffiffiffi
2

p
[10,11]

H ¼ 1

2

q
ffiffiffi
3

p
x1 0 0ffiffiffi

3
p

x1 �qþ 2x1 0 0
0 0 �q� 2x1

ffiffiffi
3

p
x1

0 0
ffiffiffi
3

p
x1 q

0
BB@

1
CCA ¼ Ha 0

0 Hb

� 	
: ð3Þ

The two-level subsystems can be described independently by spin-1/2 operators Ix; Iy ; Iz and
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E ¼ 1

2

1 0
0 1


 �

(see e.g. [12–14]),

UðtÞ ¼ UaðtÞ 0
0 UbðtÞ

� 	
;

HaðtÞ ¼ x1E þ ½�x1 þ qðtÞ
Iz þ
ffiffiffi
3

p
x1Ix;

HbðtÞ ¼ �x1E þ ½�x1 � qðtÞ
Iz þ
ffiffiffi
3

p
x1Ix:

ð4Þ

The spin-1/2 Hamiltonians are transferred further into a doubly rotating frame. The first rotation
Rq ¼ e�iuðtÞIz , uðtÞ ¼

R t
0
qðt0Þdt0 eliminates the large quadrupolar coupling term qðtÞ. The � signs are for Ha

and Hb, respectively. The second rotation Rrf ¼ e�inxrt=2 	 einxrtIz reduces x1 to a rotary resonance offset
Dx1 ¼ x1 � nxr with n the closest integer to x1=xr

HaðtÞ ¼ Dx1ðE � IzÞ þ
ffiffiffi
3

p

2
x1½Iþe�iuðtÞ�inxrt þ I�eiuðtÞþinxrt
;

HbðtÞ ¼ �Dx1ðE þ IzÞ þ
ffiffiffi
3

p

2
x1½IþeiuðtÞ�inxrt þ I�e�iuðtÞþinxrt
:

ð5Þ

Both rotations keep the same periodicity of the Hamiltonians. The phase modulation by quadrupolar
coupling can be expanded in a Fourier series

eiuðtÞ ¼
X1
k¼�1

Skeikxrt: ð6Þ

The expansion coefficient Sk is the individual intensity contribution to the kth spinning sideband under
MAS of the first-order quadrupolar interaction.

The rotating frame and basis rotation change matrix representations of operators A ) R 	 A 	 R�1. The
rotation by the quadrupolar Hamiltonian commutes with all central and triple-quantum transition oper-
ators therefore does not affect the observable and density operators relevant to MQMAS experiment. The
basis change rotates the indices of spin operators x; y; z and the rf rotation modulates additionally the
central transition operators:

Tx ¼ S1;4
z ; Cx ¼ S2;3

z ;

Ty ¼ �S1;4
y ; Cy ¼ iðS2;3

þ e�i2nxrt � S2;3
� ei2nxrtÞ=2;

Tz ¼ S1;4
x ; Cz ¼ ðS2;3

þ e�i2nxrt þ S2;3
� ei2nxrtÞ=2:

ð7Þ

The spin dynamics of MQ excitation and conversion can be obtained explicitly in terms of the spin-1/2
propagator elements in the doubly rotating frame:

SexðtÞ ¼ Tr½Ty 	 UðtÞð3Tz þ CzÞU�1ðtÞ
 ¼ Im
3

2
Ua

aaU
b�
bb

�
� 1

2
Ua

abU
b
abe

�i2nxrt

	
;

SconðtÞ ¼ Tr½Tþ 	 UðtÞC�UðtÞ�1
 ¼
Ua

ab

��� ���2 þ Ub
ab

��� ���2
4

�
Re½Ua

abU
b
abe

�i2nxrt

2

;

ð8Þ

where a and b represent two states of a spin-1/2. In SexðtÞ, the first and the second term are the excitation
from the polarization of triple-quantum Tz and central transitions Cz, respectively. In the conversion, the
first and the second term are the in-phase and out-phase coherence transfer with respect to the rf pulse.
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With the spin-1/2 formalism, the spin dynamics of the quadrupolar nuclei has been transformed into
solving the propagators of the spin-1/2 Hamiltonians in the doubly rotating frame that will be described in
the following section.

3. Floquet theory

For a time-dependent Hamiltonian, an analytical solution of the propagator is not generally available
even with a simple two-level system. Floquet theory can transfer the problem of a periodic Hamiltonian
into a time-independent one. Numerous applications of Floquet theory can be found in solid state NMR of
rotating samples [15–21]. In this section, the formalism of Floquet theory is briefly described followed by a
treatment to the spin-1/2 Hamiltonians.

Floquet theorem starts by separating the propagator into a periodic part PðtÞ and a constant Hamil-
tonian Q [22]

UðtÞ ¼ P ðtÞe�iQtP ð0Þ�1
: ð9Þ

The periodic operator P ðtÞ is expanded in a Fourier series and so is the Hamiltonian

P ðtÞ ¼
X1
k¼�1

P ðkÞeikxrt; HðtÞ ¼
X1
k¼�1

H ðkÞeikxrt: ð10Þ

The expansion coefficient P ðkÞ and Q satisfy an equation directly derived from the Schr€oodinger equation

X1
k¼�1

ðH ðl�kÞ þ lxrdklÞP ðkÞ ¼ P ðlÞQ: ð11Þ

Thus Q and P ðkÞ can be obtained as the eigenvalues and eigenvectors of a so-called Floquet Hamiltonian

HF ¼
X1

k;l¼�1
lj iðH ðl�kÞ þ lxrdklÞ kh j: ð12Þ

The Floquet Hamiltonian is time-independent but its matrix spans infinitely in Floquet space. The matrix is
often truncated because of the increasing diagonal elements with the Floquet index.

The Floquet matrix of the spin-1/2 Hamiltonian can be obtained explicitly by replacing their elements
with the corresponding Floquet sub-matrices:

HF
a ¼

. . . 0 0 0 0
0 xr 0 0 0
0 0 0 0 0
0 0 0 �xr 0
0 0 0 0 . . .

0
BBBB@

1
CCCCA

ffiffiffi
3

p
x1
2

. . . S�
�n�1 S�

�n�2 S�
�n�3 S�

�n�4

S�
�nþ1 S�

�n S�
�n�1 S�

�n�2 S�
�n�3

S�
�nþ2 S�

�nþ1 S�
�n S�

�n�1 S�
�n�2

S�
�nþ3 S�

�nþ2 S�
�nþ1 S�

�n S�
�n�1

S�
�nþ4 S�

�nþ3 S�
�nþ2 S�

�nþ1 . . .

0
BBBB@

1
CCCCA

ffiffiffi
3

p
x1
2

. . . S�nþ1 S�nþ2 S�nþ3 S�nþ4

S�n�1 S�n S�nþ1 S�nþ2 S�nþ3

S�n�2 S�n�1 S�n S�nþ1 S�nþ2

S�n�3 S�n�2 S�n�1 S�n S�nþ1

S�n�4 S�n�3 S�n�2 S�n�1 . . .

0
BBBB@

1
CCCCA

. . . 0 0 0 0
0 xr þDx1 0 0 0
0 0 Dx1 0 0
0 0 0 �xr þDx1 0
0 0 0 0 . . .

0
BBBB@

1
CCCCA

2
666666666666664

3
777777777777775

:

ð13Þ
Off-diagonal elements are non-zero only between a and b. Under fast MAS and moderate rf field strength,
these elements are usually small compared to xr due to the scaling by spinning sideband intensity Sk. The
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sum of sideband intensities is normalized
P

Skj j2 ¼ 1 and there are many sidebands by large first-order
quadrupolar interactions.

The eigenvalues and eigenvectors of the Floquet matrix can be obtained by reducing off-diagonal ele-
ments through Jacobi transformations [23]. Jacobi transformation is a rotation that eliminates one pair of
off-diagonal elements at a time:

J�1
ij

Ei Vij
V �
ij Ej

 !
Jij ¼

Ei þ D=2 0

0 Ej � D=2


 �
;

Jij ¼
1 D=2Vij

�D=2V �
ij 1

 !
;

D ¼ �ðEi � EjÞ þ sEi�Ej

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEi � EjÞ2 þ 4 Vij

�� ��2;q
ð14Þ

where sEi�Ej is the sign of Ei � Ej. It is worthy mentioning that Jij is slightly different from [23] by a
scaling factor. Successive Jacobi transformations through all off-diagonal elements reduce the Floquet
matrix to nearly diagonal despite that individual Jacobi rotation may cause a little undo to previously
annihilated elements. The overall rotation matrix of the successive Jacobi transformations PJij can be
approximated as

PJij �

. . . 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 . . .

0
BBBB@

1
CCCCA

. . . : : : :
: r0 r1 r2 :
: r�1 r0 r1 :
: r�2 r�1 r0 :
: : : : . . .

0
BBBB@

1
CCCCA

. . . : : : :
: �r�0 �r��1 �r��2 :
: �r�1 �r�0 �r��1 :
: �r�2 �r�1 �r�0 :
: : : : . . .

0
BBBB@

1
CCCCA

. . . 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 . . .

0
BBBB@

1
CCCCA

2
666666666666664

3
777777777777775

: ð15Þ

The resulting shifts of diagonal elements of the Hamiltonian and the rotation matrix elements are

Dxa;b ¼
X
k

Da;b
k ;

Da;b
k ¼ �ðkxr þ Dx1Þ þ skþDx1=xr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkxr þ Dx1Þ2 þ 3x2

1 S�ðnþkÞ
�� ��2q

;

rak ¼
Da

kffiffiffi
3

p
x1S�

�ðnþkÞ
; rbk ¼

Db
kffiffiffi

3
p

x1Snþk

:

ð16Þ

The index a; b and � sign are for HF
a and HF

b , respectively. It is important to note that one set of ei-
genvalue and eigenvector is sufficient for each Floquet sub-matrix because the eigenvalues of Floquet
Hamiltonian are separated by the modulation frequency with the corresponding eigenvector elements
shifted by the Floquet index.

The Q and P ðkÞ operators can be obtained from the eigenvalue and the eigenvector extracted from the
rotation matrix PJij:

Qa;b ¼ Dx1E þ ðDxa;b � Dx1ÞIz;

P ðkÞ
a;b ¼ dk0 ra;bk

�ra;b�k dk0

 !
;

ð17Þ
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where dk0 is the discrete d-function. The results lead to an analytical expression of the spin-1/2 prop-
agator:

UðtÞ ¼
X
k

P ðkÞe�iQtþikxrtP ð0Þ�1
; ð18Þ

P ð0Þ ¼
P

P ðkÞ is an unitary matrix and can be generally described by a spin-1/2 rotation operator with Euler
angles ðu; h;�uÞ [24]:

P ð0Þ ¼
X
k

P ðkÞ ¼ cos�1 h
2
R; R ¼ e�iIzue�iIyheiIzu;

tan
h
2
e�iu ¼ �

X
k

ra;bk :

ð19Þ

When t ¼ nsr, the propagator can be described by an effective Hamiltonian because P ðnsrÞ ¼ P ð0Þ

UðnsrÞ ¼ Pð0Þe�iQtP ð0Þ�1 ¼ e�iHeff t;

Heff ¼ RQR�1:
ð20Þ

This simplification is also valid in the case that rotor modulation of spin dynamics and spinning sidebands
in frequency domain are negligible. The full propagator and effective Hamiltonian in the doubly rotating
frame are given by

UðtÞ ¼ e�ið~xxeff
a 	~IIþDx1EÞt 0

0 e�ið~xxeff
b 	~II�Dx1EÞt

" #
;

Heff ¼
~xxeff

a 	~II þ Dx1E 0

0 ~xxeff
b 	~II � Dx1E

2
4

3
5:

ð21Þ

The Hamiltonian is described by effective fields oriented at the polar angles ðha;b;ua;bÞ

xeff
a;b ¼ Dxa;b � Dx1: ð22Þ

The effective fields along with the frequency shift Dxa;b and polar angle ðha;b;ua;bÞ in Eqs. (16) and (19)
summarize the results of Floquet treatment to the spin-1/2 Hamiltonians. The effective Hamiltonian can
also be obtained principally by an average Hamiltonian series. Because HaðtÞ and HbðtÞ in the doubly
rotating frame contain numerous modulation terms, the average Hamiltonian approach requires high-
order terms to fully explain the rotary resonance phenomenon. The derivation of high-order average
Hamiltonian can become very complex where as the Floquet approach provide a single analytical ex-
pression for the effective Hamiltonian despite that the Floquet formalism appeared to be complex in the
beginning.

4. Rotary resonance

The spin dynamics of MQ excitation and conversion can be obtained explicitly in terms of the spin-1/2
propagators. We use the derived effective Hamiltonian to simplify the discussions of rotary resonance. We
also focus on only the terms that are responsible for the rotary resonance effect: the excitation from triple-
quantum polarization Tz and the in-phase MQ coherence transfer:
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SMQ
ex ðtÞ ¼ Im

3

2
e�iDx1t cos

xeff
a t
2


�
� i cos ha sin

xeff
a t
2

�
cos

xeff
b t
2



� i cos hb sin

xeff
b t
2

�	
;

Sin-phase
con ðtÞ ¼ 1

4
sin2 ha sin

2 xeff
a t
2

�
þ sin2 hb sin

2 xeff
b t
2

	
:

ð23Þ

Fig. 1 plots the MQ excitation and conversion curves obtained from the theory in comparisons with step-
wise numerical calculations. The theoretical results show nearly perfect fits with the numerical simulations
especially at low rf fields. In Floquet treatment, the eigenvalue and eigenvector were obtained from suc-
cessive Jacobi transformations only once through the Floquet matrix. As off-diagonal elements are pro-
portional to x1, the deviation by this approximation is expected to increase with the rf field.

In the doubly rotating frame, the effective Hamiltonian has the following S1;4
z component:

x1;4
z ¼ Dx1 sin2 ha

2



þ sin2 hb

2

�
þ Dxa cos ha þ Dxb cos hb

2
: ð24Þ

For the triple-quantum transition, ðS1;4
x ; S1;4

y ; S1;4
z Þ forms an orthogonal basis of the Liouville space: S1;4

x ¼ Tz
is the triple-quantum polarization; S1;4

y ¼ �Ty and S1;4
z ¼ Tx are imaginary and real part of the triple-

quantum coherence, respectively. Therefore x1;4
z is the triple-quantum Hamiltonian element that rotates

triple-quantum polarization into the imaginary part triple-quantum coherence.
Fig. 1 shows an oscillatory curve for MQ excitation with nulls near x1 ¼ nxr=2. MQ conversion

peaks at x1 ¼ nxr. The modulation in MQ conversion can be explained by the polar angle alone. At
off-resonance Dx1 �

ffiffiffi
3

p
x1jSnj, the polar angles of the effective fields are small because rk � 1. When

on-resonance Dx1 � 0, the polar angles are close to 90� because r0 ¼ 1. The angular factors sin2 ha;b

yield peaks for MQ conversion at rotary resonance condition x1 ¼ nxr. The polar angle curve hha;bi
plotted in Fig. 1b illustrates the close relation between MQ conversion and the polar angles of the
effective fields.

0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

S

S

ex

conv
in-phase

MQ
/3

r/ω1ω(a)
0 0.5 1 1.5 2 2.5 3

0

1.0

r/ω1ω

a,bθ o/90

a ∆ω +∆ω 

(b)

2ωr

b

Fig. 1. (a) MQ excitation (�) and MQ conversion (�), (b) mean frequency shift F ¼ ðDxa þ DxbÞ=2xr and polar angle ha;b of effective

fields as a function of rf field x1 over spinning frequency xr. In (a), the stars and circles are from exact numerical simulations and the

solid lines are the results from Floquet theory after powder averages. Quadrupolar coupling parameters qc ¼ 3:2 MHz, g ¼ 0:21 of
87RbClO4 were used in the calculation. The pulse length is two rotor periods and the spinning frequency is 40 kHz.

258 Z. Gan, P. Grandinetti / Chemical Physics Letters 352 (2002) 252–261



The resonance behavior in MQ excitation can be explained as following. When on-resonance, the triple-
quantum Hamiltonian component x1;4

z is near zero because Dx1 � 0 and ha;b � 90�. At off-resonance, the
triple-quantum component becomes x1;4

z � ðDxa þ DxbÞ=2 because ha;b � 0�. Fig. 1b shows that the mean
frequency shift hDxa þ Dxbi=2 vanishes when the rotary resonance offset equals a half of the spinning
frequency Dx1 ¼ xr=2 (the physical insight of the vanishing frequency shift will be discussed later). Thus,
the MQ excitation is at nulls for both x1 � nxr and x1 � ðnþ 1=2Þxr.

The overall MQ excitation for powder samples hx1;4
z i can be estimated as the following. The intensities of

low-order spinning sidebands are approximately equal Sk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xr=2xq

p
, where 2xq is the full first-order

quadrupolar splitting. For simplicity, we also assume that the frequency shift Dxa;b and the polar angles ha;b

of the effective fields can be powder-averaged separately:

Dxa þ Dxbh i
2

¼ F 	 xr; tan
ha;b

2

� �
¼ F

R
;

F ¼
X1
k¼�1

skþDx1=xr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ Dx1=xrÞ2 þ R2

q
� ðk þ Dx1=xrÞ;

ð25Þ

where F is a dimensionless function shown in Fig. 1 that depends on the rotary resonance offset Dx1=xr.
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3x2

1=xqxr

p
is a parameter similar to the adiabatic parameter a ¼ x2

1=xqxr introduced by Vega [11].
With this assumption, the average triple-quantum Hamiltonian can be obtained:

x1;4
z

� �
� R2 � F 2 þ 2FDx1=xr

R2 þ F 2
Fxr: ð26Þ

The expression reveals that MQ excitation is directly proportional to the mean frequency shift
hDxa þ Dxbi=2 ¼ F 	 xr with nulls at x1 � nxr=2. In Fig. 1, the excitation curve does not follow exactly the
spikes of the frequency shifts near x1 ¼ nxr. When Dx1 � 0, it can be shown that F � R and the numerator
in hx1;4

z i reduces the mean triple-quantum element of the Hamiltonian. This reduction shifts the maximum
MQ excitation toward the middle between adjacent nulls. This reduction can also be understood through
the scaling cos ha;b � 0 in Eq. (24) when Dx1 � 0.

The rotary resonance in MQ excitation is related to the frequency shift Dxa;b caused by the modulating rf
Hamiltonian in the doubly rotating frame. The spin-1/2 Hamiltonians represents a general two-level system
under a randomly modulated periodic perturbation. Such a perturbation can be descried by equally spaced
sidebands in the spectral density (Fig. 2) similar to the low-order spinning sidebands caused by the first-
order quadrupolar coupling where the powder average mimics the assemble average of the random
modulation. Each sideband causes a frequency shift through a Bloch–Siegert type effect [25]. The overall
shift is a sum from all sidebands mostly from the ones with frequency nxr close to the transition frequency
x1. Considering the symmetry of sidebands below and above the transition frequency, the net frequency
shift becomes zero when x1 is exactly on one of the sidebands x1 ¼ nxr or in the middle between two
adjacent sidebands x1 ¼ ðnþ 1=2Þxr. The vanishing frequency shift at these conditions leads to nulls in
MQ excitation. This picture gives a simple explanation to the origin of the rotary resonance phenomenon
based on symmetry arguments.

20 1-1 3 4ωr-2-3

ω1

Fig. 2. Spectral density of two-level system (DE ¼ x1) under a randomly phase modulated periodic perturbation. The shift of tran-

sition frequency becomes zero when the transition frequency is on one of the sidebands or in the middle between sidebands.
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5. Conclusions

It has been shown that the spin dynamics of a spin-3/2 under rf irradiation and magic-angle spinning
can be solved analytically using spin-1/2 formalism and Floquet theory. An effective Hamiltonian has
been obtained in a doubly rotating frame. The theory explains the rotary resonance effect especially the
origin of the resonance conditions. The theory can also be applied to spin dynamics of other important
phenomenon such as nutation [10] and spin-lock [11] of quadrupolar nuclei under magic-angle sample
spinning.

The rotary resonance phenomenon is directly related to a general problem of a two-level system under a
randomly phase modulated perturbation. Based on symmetry arguments, the frequency shift from the
periodic perturbation becomes zero when the transition frequency matches an integer or a half integer of
the modulation frequency. The rotary resonance phenomenon in MQMAS is just one example of such a
resonant behavior in frequency shift that may also occur in spin dynamics of other type of spin interactions
under sample spinning.

It should be noted that an alternative theoretical treatment of this problem using bimodal Floquet
theory was recently presented by J.D. Walls, K.-H. Lim and A. Pines at the 2nd Alpine Meeting on Solid-
State NMR in Chamonix, France.
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