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The exploitation of chemical shift anisotropy (CSA) for probing
structure and dynamics has a long history in magnetic resonance
spectroscopy.1 Phosphate-group2 and base-pair orientations3 in
nucleic acids, phospholipid headgroup interactions,4 and enanti-
omers of chiral molecules5 have all been investigated via CSA.
Numerous applications also exist for the study of proteins, including
probing hydrogen-bond formation and secondary structure,6 char-
acterizing rapid internal motions,7 and analyzing the dynamics8 and
conformations9 of protein backbones. The applications previously
described involve the use of spin-1/2 nuclei such as 1H, 13C, 15N,
and 31P. For these nuclei, the CSA can be measured in a variety of
ways, including the use of cross-relaxation10 or liquid-crystalline
solvents11 in solution as well as the analysis of static spectra or
magic-angle spinning (MAS) sidebands1 in solids.

Nearly 70% of NMR-active nuclei have spin I > 1/2, and
unfortunately, these nuclei exhibit large quadrupolar couplings that
render most solution NMR methods for determining CSA ineffec-
tive. These couplings also complicate the analysis of solid-state
experiments, as spectra must be fit for the principal components of
both the chemical-shift and quadrupolar-coupling tensors as well
as for their relative orientation.12–17 While techniques such as SAS18

and DACSY19 have shown significant improvement over traditional
methods, they do not explicitly separate the CSA from the
quadrupolar anisotropy, and thus, determination of the CSA still
requires a large number of fit parameters. They also require rapid
sample reorientation during the experiment, making them chal-
lenging to implement.

Wang et al.20 proposed a solution for I ) 3/2 nuclei in an
experiment analogous to multiple-quantum magic-angle spinning
(MQ-MAS)21 except that the rotor is oriented at a magic angle for
rank-four interactions (70.12°) rather than the magic angle for rank-
two interactions (54.74°). In this work, we expand upon this idea
and demonstrate that with the use of appropriate affine transforma-
tions,22 the anisotropies of the chemical shift and the quadrupolar
coupling can be correlated in orthogonal dimensions, making the
technique applicable to all half-integer quadrupolar nuclei. We refer
to this experiment as correlation of anisotropies separated through
echo refocusing (COASTER).

The COASTER experiment is a triple-to-single-quantum cor-
relation with a coherence transfer pathway of p ) 0 f +3 f -1
while the sample is spun at 70.12°. This pathway refocuses the
second-rank quadrupolar anisotropy and chemical shift at different
times in the 2D experiment. As illustrated in Figure 1, the
quadrupolar anisotropy refocuses along the line C2

[1]t1 + C2
[2]t2 )

0, where C2
[n] is the second-order rank-two coefficient of the

quadrupolar coupling in the nth dimension. Similarly, the chemical
shift refocuses along the line p[1]t1 + p[2]t2 ) 0, where p[n] is the
coherence order in the nth dimension. The appropriate affine
transformation for separating these interactions decomposes into a
shearing transformation along the ω1 coordinate with ratio λ1

followed by a scaling of ω1 by a factor s1, after which ω2 is sheared

and scaled by λ2 and s2, respectively (see Table 1 and the Supporting
Information). Fourier transformation of the new time coordinates
produces two frequency coordinates, which we label as ω1′(CSA)
and ω2′(Q). The projection of the 2D COASTER spectrum onto
the ω2′(Q) axis yields a 1D spectrum that depends only on the
principal components of the quadrupolar-coupling tensor and is
independent of the principal components of the chemical-shift tensor
and the relative orientation of the two tensors. Similarly, the
projection onto the ω1′(CSA) axis yields a 1D spectrum that
contains only anisotropy from the chemical shift interaction and is
independent of the second-rank anisotropic quadrupolar contribution
to the transition frequency and the relative orientation of the two
tensors. The isotropic chemical shift (δcs) is obtained from the
isotropic shifts found in the ω1′(CSA) and ω2′(Q) projections. This
separation of anisotropies permits an accurate determination of the
principal components of both the quadrupolar-coupling and chemi-
cal-shift tensors. The relative orientation of the two tensors is
obtained by analyzing the pattern within the 2D COASTER
spectrum. When the two tensors are diagonal in the same coordinate
system, the 2D spectrum contains a triangular pattern, except when
the asymmetry parameters for both tensors are zero (ηcs ) ηq )
0), where the pattern in the 2D spectrum becomes a line. The
vertices of the triangle correspond to the principal components of
each tensor and establish which components are aligned. When the
two tensors are not diagonal in the same coordinate system, an
elliptical pattern appears in the 2D spectrum.

Figure 1. Quadrupolar-coupling and chemical shift anisotropies are
separated into orthogonal time domains after the application of an affine
transformation using the shearing and scaling parameters given in Table 1.

Table 1. Shearing Ratios (λ) and Scaling Factors (s) for the Two
Dimensions in the COASTER Experiment

I λ1 s1 λ2 s2

3/2 0 1 1/3
3/4

5/2
15/8

8/23
23/9

9/32
7/2

12/5
5/17

17/3
3/20

9/2
21/8

8/29
29/3

3/32

Published on Web 07/25/2008

10.1021/ja802865x CCC: $40.75 © 2008 American Chemical Society10858 9 J. AM. CHEM. SOC. 2008, 130, 10858–10859



If the chemical structure around a nucleus contains a symmetry
axis, both the chemical shift and quadrupolar coupling often form
axially symmetric tensors (ηcs ) ηq ) 0) that are aligned with the
symmetry axis. For example, in K3[Cu(CN)4], a model Cu(CN)4

3-

structure that is popular for constructing supramolecular as-
semblies,23 there is a C3 axis along one of the Cu-CN bonds, and
the largest principal components of both the chemical shift and
quadrupolar coupling for 63Cu are aligned with this axis.13 As
shown in Figure 2, the 63Cu COASTER projections confirm that
both tensors are symmetric, and the narrow ridge in the 2D spectrum
indicates that the tensors are diagonal in the same axis system.

Quadrupolar couplings generally depend only on the electronic
ground state, whereas the chemical shift also depends on excited
electronic states. For example, in an analogous cobalt complex,
K3[Co(CN)6], there is a correlation between the 59Co CSA and the
ratio of the quadrupolar coupling constant, Cq, to the d-d transition
energy.14 Thus, while the 59Co quadrupolar coupling is asymmetric
(ηq ) 1),15 the CSA shows only a modest deviation from cylindrical
symmetry (ηcs ) 0.25). These differences in ηq and ηcs are observed
in the 1D projections of the 59Co 2D COASTER spectrum in Figure
3, which also shows a triangular pattern in the 2D spectrum, indicating
that the tensors are still diagonal in the same axis system with the
coincident components evident from the vertices of the triangle.

In Figure 4, we show the 87Rb COASTER spectrum of RbCrO4,
where the appearance of an elliptical pattern indicates that the
tensors are not diagonal in the same coordinate system. The
simulation indicates that % ) 70°, in agreement with previous
measurements.16 Components of the chemical-shift tensor generally
align with the crystal axes for many Rb and Cs salts.16 Thus,
accurate measurement of the relative orientation allows one to
determine the orientation of the quadrupolar-coupling tensor in the
molecular frame without the need for ab initio calculations. Similar
measurements could also be useful in carbonyl-containing systems

such as proteins, where the 17O quadrupolar-coupling tensor is
always oriented along the carbonyl bond while substituent effects
cause the chemical-shift tensor to rotate away from the bond.17

Since COASTER is performed at a fixed rotor axis, it can be
implemented with minor modifications to most standard MAS
probes. It should be noted that COASTER may be more appropriate
for dilute or low-γ nuclei, where the off-magic-angle spinning will
not reintroduce strong dipolar couplings that could complicate
interpretation. Finally, although COASTER will not resolve over-
lapping sites, it is possible to extend the ideas presented here into
a 3D experiment for increased resolution.
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Figure 2. (left) 63Cu COASTER spectrum of K3[Cu(CN)4] at 9.4 T
referenced to 1 M KCN/0.1 M CuCN, along with (right) a simulation using
the parameter values Cq ) 1.1 MHz, δcs ) -49 ppm, 'cs ) 30 ppm, and
ηq ) ηcs ) 0.

Figure 3. (left) 59Co COASTER spectrum of K3[Co(CN)6] at 9.4 T
referenced to 1 M K3[Co(CN)6], along with (right) a simulation using the
parameter values Cq ) 6.2 MHz, δcs ) 14 ppm, 'cs ) -62 ppm, ηq ) 1.0,
and ηcs ) 0.25 and Euler angles R ) 90° and % ) γ ) 0°.

Figure 4. (left) 87Rb COASTER spectrum of RbCrO4 at 9.4 T referenced
to 1 M RbNO3, along with (right) a simulation using the parameter values
Cq ) 3.5 MHz, ηq ) 0.36, δcs ) -9 ppm, 'cs ) -110 ppm, ηcs ) 0, R )
γ ) 0°, and % ) 70°.
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In the first section of this supplement we derive the spatial and spin transition dependences of the chemical shift and

quadrupolar contributions to the NMR transition frequency. In the second section we describe the shearing and scaling

transformations used for the separation of the chemical shift and quadrupolar coupling frequency anisotropies in the COASTER

experiment, provide a flow chart for processing COASTER data, and give some illustrative examples of how the 2D COASTER

spectrum changes as the relative orientation of the chemical shift and quadrupolar coupling tensors is varied.

1 Transition Frequency

1.1 Chemical Shift Contribution

The first-order chemical shift contribution to the high field Hamiltonian, averaged over rapid sample rotation at an angle βR,

is written:

Ĥ(1)
cs = h̄ω0

(

σ +

√

2

3
P2(cosβR)A

{cs}
2,0

)

T̂1,0. (1)

Here, ω0 is the Larmor frequency, σ is isotropic shielding, PL(cosβR) is the Legendre polynomial of rank L, and A
{cs}
2,0 is an

element of the rank two spherical tensor describing the spatial dependence of the chemical shift interaction in the rotor frame,

which, in its principal axis system†, has the values of ρ
{cs}
2,0 = 3ζcs/

√
6, ρ

{cs}
2,±1 = 0 and ρ

{cs}
2,±2 = ηcsζcs/2 where ζcs is the shielding

anisotropy and ηcs is the shielding tensor asymmetry. This Hamiltonian leads to the first-order chemical shift contribution to

the transition frequency of

Ωcs = Υ
{cs}
0,0 ·p + Υ

{cs}
2,0 ·p, (2)

where p is the coherence order, defined as p = 〈ms|T̂1,0|ms〉 − 〈mr|T̂1,0|mr〉 = ms − mr, and

Υ
{cs}
0,0 = ω0 σ and Υ

{cs}
2,0 = ω0

√

2

3
P2(cosβR)A

{cs}
2,0 . (3)

1.2 Quadrupolar Coupling Contribution

The first-order quadrupolar contribution to the high field Hamiltonian is

Ĥ(1)
q = h̄ωqA

{q}
2,0 T̂2,0. (4)

†When the principal axis system (PAS) of the chemical shift and quadrupolar interactions are not coincident, it is helpful to transform into a

common axis system. If one chooses the PAS of the quadrupolar coupling interaction as the common coordinate system, then the tensor components

of the chemical shift interaction will be given by:

A
{cs}
l,k

′
=

l∑

k′=−l

D
(l)

k,k′
(Λ)A

{cs}

l,k′
=

l∑

k′=−l

e−ikαd
(l)

k,k′
(β)e−ik′γA

{cs}

l,k′
,

before using in Eqs. (2) and (7). Here Λ are the Euler angles (α, β, γ) describe the relative orientation between the principal axis systems of the two

interactions.
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Here, ωq = 6πCq/2I(2I − 1), where Cq is the quadrupolar coupling constant and A
{q}
2,0 is an element of the rank two spherical

tensor describing the spatial dependence of the quadrupolar interaction in the rotor frame, which, in its principal axis system,

has the values of ρ
{q}
2,0 = 1/

√
6, ρ

{q}
2,±1 = 0 and ρ

{q}
2,±2 = ηq/6, where ηq is the quadrupolar tensor asymmetry. For many spin

I > 1/2 nuclei the quadrupolar coupling is strong enough to require the inclusion of a second-order correction, which, averaged

over rapid sample rotation, is given by‡

Ĥ(2)
q = −

h̄ω2
q

ω0

∑

L=0,2,4

PL(cosβR)A{q}
L,0

∑

J=1,3

aL,J T̂J,0. (5)

Here the tensor A{q}
L,n is related to the principal values of the A

{q}
L,n tensor by

A{q}
L,n =

L∑

n′=−L

D(L)
n′,n(Ωq)σ

{q}
L,n′ ,

where

σ
{q}
L,n =

∑

k

〈L n |2 2 k n − k〉ρ
{q}
2,k ρ

{q}
2,n−k. (6)

From Eq. (6) we obtain the relationships:

σ
{q}
0,0 =

1

6
√

5

(

η2
q

3
+ 1

)

,

σ
{q}
2,0 =

1

6

√

2

7

(

η2
q

3
− 1

)

, σ
{q}
2,±2 =

ηq

3
√

21
,

σ
{q}
4,0 =

1√
70

(

η2
q

18
+ 1

)

, σ
{q}
4,±2 =

ηq

6
√

7
, σ

{q}
4,±4 =

η2
q

36
.

The coefficients aL,J are given by

aL,J = 2
∑

k>0

〈L 0|2 2 k − k〉 〈J 0|2 2 k − k〉
k

,

and, using the Wigner-Eckert theorem, the T̂ l,k are related to our originally defined irreducible tensor operators, T̂l,k, according

to:

T̂ 1,0 =

√

2

5
[I(I + 1) − 3/4] T̂1,0,

and

T̂ 3,0 = −2 T̂3,0.

The symmetric (−m ↔ m) transitions, which are employed in the COASTER experiment, are unaffected by the first

order quadrupolar Hamiltonian. Thus, the most significant contribution from the quadrupolar interaction to the symmetric

transition frequencies comes from the second-order correction, where we obtain

Ωq = −
ω2

q

ω0

∑

L=0,2,4

PL(cosβR)A{q}
L,0 · CL, (7)

with

CL =
∑

J=1,3

aL,J

{

〈ms|T̂J,0|ms〉 − 〈mr|T̂J,0|mr〉
}

. (8)

‡for more details, see P. Grandinetti, Solid State Nucl. Mag. Reson., 23, 1-13 (2003).
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The CL describe the spin transition dependent part of the second-order quadrupolar contribution to the transition frequency

and play a role analogous to p, but are more complex functions of I, mr, and ms. Thus, by defining

Υ
{q}
L,0 =

ω2
q

ω0
PL(cosβR)A{q}

L,0, (9)

we can expand the second-order quadrupolar contribution to the transition frequency into three components having different

products of spatial and spin transition dependences:

Ωq = −Υ
{q}
0,0 ·C0 − Υ

{q}
2,0 ·C2 − Υ

{q}
4,0 ·C4. (10)

2 COASTER

The frequency of a symmetric transition in a static sample experiencing both the chemical shift and quadrupolar interactions

will depend on five components,

Ωstatic = Υ
{cs}
0,0 ·p − Υ

{q}
0,0 ·C0 + Υ

{cs}
2,0 ·p − Υ

{q}
2,0 ·C2 − Υ

{q}
4,0 ·C4, (11)

each involving different products of spatial and spin transition dependences. The lineshape of a site in a polycrystalline sample

with this frequency dependence would depend on eight parameters: Cq, ηq, σ, ζcs, ηcs, and the three Euler angles, α, β, and γ,

for the relative orientation of the quadrupolar and chemical shift tensors. While magic-angle spinning (MAS) does not remove

all anisotropy for quadrupolar nuclei with second-order broadenings, it does eliminate the second rank anisotropies, that is,

Υ
{cs}
2,0 = Υ

{q}
2,0 = 0, and then the frequency depends only on three components:

ΩMAS = Υ
{cs}
0,0 ·p − Υ

{q}
0,0 ·C0 − Υ

{q}
4,0 ·C4. (12)

Thus, the MAS lineshape of a site depends only on three parameters: Cq, ηq, and σ. In other words, the dependence on the

chemical shift anisotropy, ζcs, ηcs, and the relative tensor orientation, α, β, and γ, are removed from the spectrum. This

simplification, or elimination of five out of eight parameters, allows a more accurate and precise determination of Cq, ηq, and

σ from a MAS spectrum. Until now, there existed no analogous experiment for obtaining a spectrum with the dependences

on the quadrupolar anisotropy and the relative tensor orientation suppressed leaving only isotropic shifts and the chemical

shift anisotropy. The COASTER experiment described here not only provides this spectrum, but also provides a spectrum

that depends only on Cq, ηq, and σ, even though COASTER does not employ MAS conditions. These two spectra are the

one-dimensional projections of the two-dimensional COASTER spectrum. Additionally, information about the relative tensor

orientation, that is, α, β, and γ, is available within the full two-dimensional COASTER spectrum.

The COASTER experiment achieves this simplification by spinning at a rotor angle of 70.12◦, where Υ
{q}
4,0 = 0 and the

transition frequency is given by

Ω70.12◦ = Υ
{cs}
0,0 · p − Υ

{q}
0,0 · C0 + Υ

{cs}
2,0 · p − Υ

{q}
2,0 · C2. (13)

The anisotropy of the chemical shift and second-order quadrupolar coupling are contained with the terms Υ
{cs}
2,0 and Υ

{q}
2,0 ,

respectively. In the COASTER experiment a two-dimensional signal correlating triple quantum evolution with single quantum

evolution given by

S(t1, t2) = exp

{

i

(

Ω
[1]
iso + Υ

{cs}
2,0 · p[1] − Υ

{q}
2,0 · C [1]

2

)

t1

}

exp

{

i

(

Ω
[2]
iso + Υ

{cs}
2,0 · p[2] − Υ

{q}
2,0 · C [2]

2

)

t2

}

, (14)

is obtained, where

Ω
[n]
iso = Υ

{cs}
0,0 · p[n] − Υ

{q}
0,0 · C [n]

0 . (15)

Here p[n] and C
[n]
L are the spin transition dependent coefficients during the nth time dimension. By rearranging this signal to

the form

S(t1, t2) = exp

{

i

(

Ω
[1]
isot1 + Ω

[2]
isot2

)}

exp

{

iΥ
{cs}
2,0

(

p[1]t1 + p[2]t2

)}

exp

{

−iΥ
{q}
2,0

(

C
[1]
2 t1 + C

[2]
2 t2

)}

, (16)
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we see that the chemical shift and quadrupolar anisotropies, Υ
{cs}
2,0 and Υ

{q}
2,0 , respectively, can be separated into orthogonal

dimensions if the time coordinates are redefined according to










t1

t2










︸ ︷︷ ︸

t

=










C
[2]
2

C
[2]
2 − C

[1]
2

p[2]

p[2] − p[1]

− C
[1]
2

C
[2]
2 − C

[1]
2

− p[1]

p[2] − p[1]










︸ ︷︷ ︸

A










t′1

t′2










︸ ︷︷ ︸

t′

. (17)

Using these definitions, one obtains

p[1]t1 + p[2]t2 = −p[2]C
[1]
2 − p[1]C

[2]
2

C
[2]
2 − C

[1]
2

t′1 and C
[1]
2 t1 + C

[2]
2 t2 =

p[2]C
[1]
2 − p[1]C

[2]
2

p[2] − p[1]
t′2, (18)

and the signal as a function of the transformed time coordinates becomes

S′(t′1, t
′
2) = exp{iΩ′[1]

isot
′
1} exp{iΩ′[2]

isot
′
2} exp

{

−iΥ
{cs}
2,0

(

p[2]C
[1]
2 − p[1]C

[2]
2

C
[2]
2 − C

[1]
2

)

t′1

}

exp

{

−iΥ
{q}
2,0

(

p[2]C
[1]
2 − p[1]C

[2]
2

p[2] − p[1]

)

t′2

}

, (19)

where

Ω′[1]
iso =

C
[2]
2 Ω

[1]
iso − C

[1]
2 Ω

[2]
iso

C
[2]
2 − C

[1]
2

and Ω′[2]
iso =

p[2]Ω
[1]
iso − p[1]Ω

[2]
iso

p[2] − p[1]
. (20)

This transformation separates the chemical shift and quadrupolar anisotropies, with Υ
{cs}
2,0 evolving only during t′1 and Υ

{q}
2,0

only during t′2. Note that each column of A sums to unity. This can be understood by envisioning t1 and t2 as a simple

weighted average of two new coordinates t′1 and t′2. The transformation from the original (unprimed) coordinates to the new

(primed) coordinates, is obtained by inverting Eq. (17):










t′1

t′2










︸ ︷︷ ︸

t′

=










p[1]
(

C
[2]
2 − C

[1]
2

)

p[1]C
[2]
2 − p[2]C

[1]
2

p[2]
(

C
[2]
2 − C

[1]
2

)

p[1]C
[2]
2 − p[2]C

[1]
2

− C
[1]
2

(
p[2] − p[1]

)

p[1]C
[2]
2 − p[2]C

[1]
2

− C
[2]
2

(
p[2] − p[1]

)

p[1]C
[2]
2 − p[2]C

[1]
2










︸ ︷︷ ︸

A−1










t1

t2










︸ ︷︷ ︸

t

. (21)

The corresponding frequency domain transformation is related to Eq. (21) by

(

ω′
1, ω′

2

)

=

(

ω1, ω2

)










C
[2]
2

C
[2]
2 − C

[1]
2

p[2]

p[2] − p[1]

− C
[1]
2

C
[2]
2 − C

[1]
2

− p[1]

p[2] − p[1]










.

︸ ︷︷ ︸
(
A−1

)−1
= A

(22)

This type of transformation can be implemented as a product of shearing and scaling transformations. We adopt the following

convention for decomposing the transformation matrix A into shearing and scaling transformations

A =






1 0

λ1 1






︸ ︷︷ ︸

shear ω1






s1 0

0 1






︸ ︷︷ ︸

scale ω1






1 λ2

0 1






︸ ︷︷ ︸

shear ω2






1 0

0 s2






︸ ︷︷ ︸

scale ω2

. (23)
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The solution to these equations is given by

λ1 = −C
[1]
2

C
[2]
2

, s1 =
C

[2]
2

C
[2]
2 − C

[1]
2

, λ2 =
p[2](C

[2]
2 − C

[1]
2 )

p[2]C
[1]
2 − p[1]C

[2]
2

, and s2 =
p[2]C

[1]
2 − p[1]C

[2]
2

(p[2] − p[1])C
[2]
2

. (24)

These expressions were used to determine the shearing and scaling ratios listed in Table 1 of the main article for all half-integer

spin values. In Fig. 1 is a flowchart describing the transformation of the raw COASTER 2D time domain data (Fig. 1A) into

the 2D COASTER spectrum (Fig. 1I) using these scaling and shearing parameters.

In Fig. 2 are simulated 2D COASTER spectra showing the effect of the changing quadrupolar coupling and chemical

shift asymmetry parameters in the case where the quadrupolar coupling and chemical shift tensors have the same principal

axis systems. Generally, whenever the two tensors are diagonal in the same coordinate system, the 2D spectrum will form a

triangular pattern, except in the case with ηq = ηcs = 0, where the resulting pattern is a line in the two-dimensional spectrum.

The vertices of the triangle correspond to the principle components of the two tensors and unambiguously establish which

components are aligned.

The sensitivity of the COASTER spectrum to the relative orientation of the two tensors is shown in the simulations of

Fig. 3. Notice that the projections onto the individual axes are unchanged as the chemical shift and quadrupolar coupling

tensors are fixed. The principal components of the chemical shift and quadrupolar coupling tensors can be determined solely

by analysis of the corresponding one-dimensional projections, which are independent of the relative orientation of the two

tensors. In contrast, the relative orientation of the two tensors can be obtained by analysis of the pattern contained with the

2D COASTER spectrum. In these examples, one Euler angle is varied from 90◦ to 0◦, while the other two angles are fixed at

90◦. Note that when the Euler angles are all multiples of 90◦, the spectrum forms a triangular pattern, as the two tensors are

diagonal in a common coordinate system. When an Euler angle is not a multiple of 90◦, however, an elliptical pattern appears

in the 2D spectrum.

2.1 Experimental Details

All samples used in this study were purchased from Strem and used without further purification with the exception of

K3Cu(CN)4, which was crystallized from an aqueous solution containing KCN and CuCN. Experiments were performed at 9.4

T on a Bruker Avance 400 spectrometer using a 4 mm CMX MAS probe spinning at 15 kHz. The fixed rotor axis of 70.1±0.5◦

was calibrated by observing the residual quadrupolar splitting of 2H in deuterated hexamethylbenzene. Cu-63 spectra were

acquired at 106.25 MHz and referenced to an aqueous solution containing Cu(CN)3−4 ions by preparing an aqueous solution

of CuCN with a large excess of KCN. Spectra of Rb-87 (I=3/2) were recorded at 131.07 MHz and referenced to an aqueous

solution of RbNO3. Spectra of Co-59 (I=7/2)were referenced to a solution of K3[Co(CN)6]. The spectra of K3[Co(CN)6] were

acquired at a frequency of 95.05 MHz, while the large chemical shift of Na3[Co(NO2)6] require a Larmor frequency of 95.78

MHz. The pulse sequence utilized in this experiment is identical to the three pulse shifted echo MQ-MAS sequence§. For

excitation and conversion of triple quantum coherence, hard pulses of ν1=200 kHz were employed with durations optimized for

the particular sample, but typically of typically 3 µs and 1 µs, respectively. The last pulse is a selective (ν1 =20 kHz) π pulse

on the central transition. The recycle delay was 1s and each spectrum required 24 hours of spectrometer time to acquire.

Note

We thank a reviewer for pointing out that it may be possible to develop the CQ-PRODI experiment of Vosegaard and Massiot¶

into a method for obtaining the same information from quadrupolar nuclei in solids.

§Massiot et al., Solid State NMR, 6, 73 (1996)
¶Thomas Vosegaard and Dominique Massiot, “High-resolution two-dimensional NMR spectra of half-integer-spin quadrupolar nuclei from one-

dimensional projections”, Chem. Phys. Lett., 437, 120-125 (2007).
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Figure 1: Flow chart for transforming the raw COASTER 2D time domain data (A) into the 2D COASTER spectrum (I).

The λ1 shear is performed by a Fourier transformation of (A) with respect to t2 followed by a t1 dependent first-order phase

correction of exp{−iω2λ1t1} applied to the ω2 dimension to obtain (C). (D) is obtained after scaling the t1 dimension by

1/s1. An inverse Fourier transformation with respect to ω2 dimension creates the (t′1, t2) domain data of (E). The λ2 shear

is performed by a Fourier transformation of (E) with respect to t′1 followed by a t2 dependent first-order phase correction of

exp{−iω′
1λ2t2} applied to the ω′

1 dimension to obtain (G). (H) is obtained after scaling the t2 dimension by 1/s2. Fourier

transform with respect to t′2 results in final 2D COASTER spectrum, (I).
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Figure 2: Comparison of simulated 2D COASTER spectra showing the effect of the changing quadrupolar coupling and

chemical shift asymmetry parameters in the case where the quadrupolar coupling and chemical shift tensors have the same

principal axis systems. Other simulation parameters included I = 3/2, ω0 = 100 MHz, Cq = 3 MHz, σ = 0 ppm and ζcs = 33

ppm. The one-dimensional projections onto the quadrupolar anisotropy axis, ω′
2(Q), are the same for each ηq value. Similarly,

the one-dimensional projections onto the chemical shift anisotropy axis, ω′
1(CSA), is the same for each ηcs value.
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Figure 3: Comparison of simulated COASTER spectra showing the effect of the relative orientation on the two-dimensional

spectrum. Other simulation parameters included I = 3/2, ω0 = 100 MHz, Cq = 3 MHz, ηq = 0.25, σ = 0 ppm, ζcs = 33 ppm,

and ηcs = 0.5. Again, note that the projection onto each axis remains unchanged as the relative orientation of the quadrupolar

coupling and chemical shift tensors change.
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