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The Carr–Purcell–Meiboom–Gill !CPMG" experiment has gained popularity in solid-state NMR as
a method for enhancing sensitivity for anisotropically broadened spectra of both spin 1/2 and half
integer quadrupolar nuclei. Most commonly, the train of CPMG echoes is Fourier transformed
directly, which causes the NMR powder pattern to break up into a series of sidebands, sometimes
called “spikelets.” Larger sensitivity enhancements are observed as the delay between the ! pulses
is shortened. As the duration between the ! pulses is shortened, however, the echoes become
truncated and information about the nuclear spin interactions is lost. We explored the relationship
between enhanced sensitivity and loss of information as a function of the product " 2#, where "
is the span of the anisotropic lineshape and 2# is the ! pulse spacing. For a lineshape dominated by
the nuclear shielding anisotropy, we found that the minimum uncertainty in the tensor values is
obtained using " 2# values in the range " 2##12−1

+6 and " 2##9−3
+3 for $s=0 and $s=1,

respectively. For an anisotropic second-order quadrupolar central transition lineshape under
magic-angle spinning !MAS", the optimum range of " 2##9−2

+3 was found. Additionally, we show
how the Two-dimensional One Pulse !TOP" like processing approach can be used to eliminate the
cumbersome sideband pattern lineshape and recover a more familiar lineshape that is easily
analyzed with conventional lineshape simulation algorithms.
© 2010 American Institute of Physics. $doi:10.1063/1.3463653%

I. INTRODUCTION

In spite of modern hardware and improved methodolo-
gies, the lack of sensitivity in solid-state NMR spectroscopy
still remains an obstacle to greater widespread adoption.
While anisotropic nuclear spin interactions provide a wealth
of structural information in solid-state NMR, these same in-
teractions are also responsible for inhomogeneously broad-
ened resonances that cause notoriously low signal-to-noise
ratios. Solid-state NMR experiments, such as magic-angle
spinning !MAS", manipulate the sample’s spatial degrees of
freedom to refocus the time-domain evolution into a train of
rotary echoes. The increase in signal area in the time-domain
from the multiple echoes leads to a corresponding increase in
signal intensity in the frequency domain. A similar effect can
be obtained using the Carr–Purcell–Meiboom–Gill !CPMG"
experiment1,2 where a train of ! pulses, which manipulate
the spin degrees of freedom, create a train of Hahn spin
echoes.3 Although the CPMG experiment was originally de-
veloped for diffusion and relaxation studies in liquid-state
NMR, its ability to refocus spin degrees of freedom that are
odd order in Îz has made it a popular approach for enhancing
solid-state NMR sensitivity of anisotropic spectra for both
spin-1/2 and the central transition !CT" of half integer qua-
drupolar nuclei in polycrystalline samples.4–6

While shorter delays between ! pulses in the CPMG
experiment can provide higher sensitivity for anisotropic
spectra, it also results a corresponding information loss about

anisotropic interactions, such as the chemical shift aniso-
tropy !CSA" and quadrupolar couplings. In contrast, longer
delays between ! pulses retain anisotropic coupling informa-
tion, but the cost is a spectrum with a lower overall sensitiv-
ity. This issue has been examined by Lefort et al.7 in the
context of CPMG acquisition and the multiple-quantum
MAS experiment. In the Lefort study, the optimum range of
CPMG ! pulse spacings was defined only in terms of mini-
mizing the truncation of the echo signal decay. As shown by
Hodgkinson and Emsley8 in the analogous case of MAS
sideband analysis, however, a more appropriate merit func-
tion is the uncertainty in the tensor parameters obtained from
a least-squares analysis of the sideband !or “spikelet”" pat-
tern. In this work, we have extended the approach of
Hodgkinson and Emsley to the case of CPMG acquisition
and found that there exists a range of optimum ! pulse spac-
ings in the CPMG experiment which yield a minimum un-
certainty when extracting the NMR tensor parameters from
an anisotropic lineshape. These uncertainties can be strongly
dependent on the CPMG ! pulse spacing, increasing steeply
at short CPMG ! pulse spacings and increasing at long spac-
ings particularly when the pre-CPMG signal sensitivity is
poor. We have found that the optimum ! pulse spacing de-
pends primarily on the span of the anisotropic lineshape, ",
and generally occurs in a range of values asymmetrically
spaced around " 2#&11, regardless of the interactions con-
tributing to the lineshape. We have also found that as the
pre-CPMG sensitivity decreases, the most optimum ! pulse
spacing remains the same while the range of optimum " 2#
values contracts toward the most optimum value.a"URL: http://www.grandinetti.org. Electronic mail: grandinetti.1@osu.edu.

THE JOURNAL OF CHEMICAL PHYSICS 133, 054501 !2010"

0021-9606/2010/133"5!/054501/10/$30.00 © 2010 American Institute of Physics133, 054501-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.3463653
http://dx.doi.org/10.1063/1.3463653
http://dx.doi.org/10.1063/1.3463653
http://www.grandinetti.org


Additionally, we demonstrate how Two-dimensional One
Pulse !TOP" like processing9–11 can also be used to eliminate
the sideband !or spikelet" pattern lineshape and recover a
more familiar lineshape that is easily analyzed with conven-
tional lineshape simulation algorithms.

II. EXPERIMENTAL

All experiments were performed on a 9.4 T Bruker DMX
400 spectrometer, using a 4 mm MAS probe operating at a
207Pb frequency of 83.51 MHz for polycrystalline Pb!NO3"2
and a 87Rb frequency of 131.07 MHz for polycrystalline
RbClO4. The CPMG pulse sequence employed is shown in
Fig. 1. For CPMG-MAS experiments, the ! pulses were
separated in time by an integer multiple of the rotor period,
which was 80 %s in all experiments employing sample rota-
tion. Radio frequency power levels were calibrated on the
solution of Pb!NO3"2 and RbCl powder for 207Pb and 87Rb,
respectively. A 1M Pb!NO3"2 solution and 1M RbNO3 solu-
tion were used for referencing 207Pb and 87Rb resonances,
respectively.

In the discussion that follows we employ IUPAC defini-
tions for the nuclear shielding or chemical shift interaction.12

The isotropic nuclear shielding is defined as the trace of the
shielding tensor,

&iso = 1
3 !&xx + &yy + &zz" , !1"

where &xx, &yy, and &zz are the components of the nuclear
shielding tensor in its principal axis system. The isotropic
chemical shift 'iso is defined as

'iso = !&ref − &iso"/!1 − &ref" , !2"

where &ref is the isotropic nuclear shielding of a reference
compound. We adopt the Haeberlen convention,12 where

'&zz − &iso' ( '&yy − &iso' ( '&xx − &iso' , !3"

the shielding anisotropy )s is defined as

)s = &zz − &iso, !4"

and the shielding asymmetry parameter is defined as

$s =
&yy − &xx

)s
. !5"

The components of the chemical shift tensor, 'ij, are related
to the components of the nuclear shielding according to

'ij = !&ref − &ij"/!1 − &ref" , !6"

with '33 associated with the lineshape singularity furthest
from 'iso, and the principal component '11 associated with

the singularity furthest from '33, and the principal compo-
nent '22 associated with the singularity in between '33 and
'11.

A. Span

We find it convenient to define the optimum CPMG !
pulse spacing in terms of the span of the anisotropic line-
shape, which is defined as the difference between the maxi-
mum and minimum frequencies in the lineshape. For a
nuclear shielding or chemical shift anisotropic lineshape, the
span "s is defined as

"s = '33 − '11 = − )s!$s + 3"/2. !7"

The central transition MAS spectrum of a half-integer quad-
rupole nucleus of spin I with an anisotropic second-order
lineshape will have a span13 of

"q,MAS =
*q

2

168*0
(I!I + 1" −

3
4
)*12 + 4$q +

$q
2

3
+ , !8"

where *0 is the Larmor frequency, $q is the quadrupole cou-
pling asymmetry parameter, and *q is the quadrupole cou-
pling splitting, given by

*q =
3Cq

2I!2I − 1"
, !9"

with Cq as the quadrupole coupling constant.
The central transition static spectrum of a half-integer

quadrupole nucleus will have an anisotropic second-order
lineshape with a span13 of

"q,Static =
*q

2

16*0
(I!I + 1" −

3
4
)*25

9
+

22$q

9
+

$q
2

9
+ . !10"

III. TOP PROCESSING FOR CPMG DATA

As shown by Larsen et al.,4 the Fourier transform of the
CPMG echo train yields a sideband or spikelet pattern. The
information about unrefocused interactions is present in the
individual sideband lineshape, while information about all
interactions resides in the sideband envelope pattern. A prob-
lem with the sideband pattern is that any truncation artifacts
in the spectrum are not easily discernable. Here we show that
a TOP-like approach11 applied to CPMG data can eliminate
the sideband pattern and recover a more familiar lineshape
that is easily analyzed with conventional lineshape simula-
tion algorithms.

The decay of a CPMG echo train will arise from homo-
geneous interactions in addition to any motional processes
which interfere with the echo refocusing. Thus, one can write
the CPMG time-domain signal of a single site as

S!t" = se!t" ,
N=−+

+

A!N"ei2!Nt/2#, !11"

where 2# is the distance between the center of the two !
pulses, se!t" represents the envelope function due to the un-
refocused spin interactions and is responsible for the indi-
vidual sideband lineshape, and A!N" is the amplitude of its

π/2 π π π

τ1 τ2 τ τ τ ττ

m

0
+1

-1
p

FIG. 1. CPMG pulse sequence and coherence transfer pathway used in this
study.
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Nth sideband, which, as shown in Appendices A and B, is
given by

A!N" = -
0

2#

e−iW!,,-,."!#−'t−#'"e−i2!Nt/2#dt , !12"

where W!, ,- ,." is the frequency of a crystallite at Euler
angles ,, -, and . between the interaction tensor and the
crystal coordinate frame.

Following the approach outlined for rotary echoes,11 the
1D time-domain signal can be mapped into an intermediate
2D coordinate system with variables k and t2!, as shown in
Fig. 2, by defining

t = t2! + k2# , !13"

where

t2! = t mod 2# !14"

and k is an integer given by

k = ! t

2# " . !15"

Here !x" represents the floor function of x. Using these defi-
nitions the 1D CPMG signal can be mapped into the 2D
signal in the k− t2! coordinate system obtaining

S!k,t2!" = se!k,t2!" ,
N=−+

+

A!N"ei2!Nt2!/2#.

To this signal we apply the affine transformation

*t1

t2
+ = *2# 1

0 1
+* k

t2!
+ !16"

and obtain the 2D signal

S!t1,t2" = se!t1,t2" ,
N=−+

+

A!N"ei2!Nt2/2#. !17"

A 2D Fourier transform of this signal yields a TOP-CPMG
2D spectrum, as shown in Fig. 3, which correlates interac-

tions unrefocused by the ! pulse train to all interactions. The
/1=0 cross section of the TOP-CPMG spectrum yields the
TOP-CPMG-enhanced 1D spectrum.

It is well known that the sensitivity of a spectrum will
decrease with increasing acquisition time, unless a proper
time-domain matched filter is applied prior to Fourier trans-
form. Similarly, if no apodization is applied to the CPMG
data before processing, the sensitivity of the sideband or
TOP-CPMG spectrum will become dependent on the total
CPMG acquisition time. For a CPMG signal the appropriate
matched filter is one that matches the envelope function,14

se!t", due to the unrefocused spin interactions. The param-
eters for this envelope function are easily obtained from the
lineshape of an individual sideband or, alternatively, the line-
shape in the /1 projection of the TOP-CPMG 2D spectrum.

IV. RESULTS AND DISCUSSION

A. First-order chemical shift

Using TOP processed CPMG spectra, we have explored
the relationship between the CPMG ! pulse spacing and the
tensor parameter uncertainties extracted from the CPMG-
enhanced anisotropic lineshape. This idea is similar to that of
Hodgkinson and Emsley,8 who investigated the optimum
spinning speed for extracting nuclear shielding anisotropy
parameters in a spinning sideband analysis. They found that
the minimum uncertainty in extracting the shielding aniso-
tropy )s occurred when ')s'#R#9, where #R is the rotor pe-
riod. For the shielding asymmetry parameter $s, they state
“that static spectra always provide a more reliable determi-
nation.” We believe, however, that this conclusion may have
been incorrectly biased by examining reliability instead of
standard deviation, since reliability in the case of $s becomes
ill-defined as $s goes to zero.

A notable difference between CPMG and MAS is that
CPMG refocuses both isotropic and anisotropic frequencies,
whereas MAS refocuses only anisotropic frequencies. Thus,
with increasing MAS speed or decreasing CPMG ! pulse
spacing the uncertainty in nuclear shielding anisotropy pa-
rameters, )s and $s, increases in both methods. In contrast,
the uncertainty in the isotropic chemical shift decreases in
MAS with decreasing rotor period, but increases in CPMG
with decreasing ! pulse spacing. Thus, the optimum echo
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FIG. 2. !a" CPMG echoes with coordinate definitions and timings. !b" Sam-
pling trajectory !blue lines" of the CMPG data in the 2D t1− t2 and k− t2!
coordinate systems. Identical data sets run parallel in the 2D plane and are
separated by 2# in t1− t2 coordinate system. !c" Affine transformed 2D data
set that correlates t1 and t2.
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FIG. 3. !a" 87Rb TOP-CPMG MAS spectrum of RbClO4. The /1 dimension
contains all the unrefocused frequencies and the /2 dimension contains all
frequencies. The contour level for the 2D contour plot is 20%–100% with a
linear increment of 4.2% of the maximum amplitude. !b" The CPMG-
enhanced 1D spectrum obtained from the /1=0 cross-section.
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cycle time for extracting the nuclear shielding tensor from a
sideband analysis of MAS may not necessarily be the same
for CPMG.

The tradeoff between spectral sensitivity and spectral
content is well illustrated in Fig. 4 with a series of
TOP-CPMG spectra of a 207Pb anisotropic nuclear shielding
lineshape in static Pb!NO3"2 measured as a function of
CPMG ! pulse spacing. As expected, with decreasing
CPMG ! pulse spacing the sensitivity of the spectrum in-
creases by over an order of magnitude compared to the
Bloch decay spectrum. For comparison, we also show the
sideband !or spikelet" spectra obtained with a simple Fourier
transform of the CPMG echo train. Note that the distortions
due to signal truncation are more easily discernable in the
TOP-CPMG spectra than the sideband spectra. As the CPMG
! pulse spacing decreases, the spectrum becomes a convo-
lution with a sinc function of increasing linewidth. When
extracting the nuclear shielding tensor parameters, we can
include the effect of this signal truncation in the shielding
anisotropy lineshape model to improve the least-squares fit.
Even with this improvement, however, the information about
the shielding tensor is eventually lost as the ! pulse spacing
decreases and the sinc function lineshape dominates the
spectrum. This loss of information about the shielding tensor
is best reflected in the changing standard deviation of the

principal components of the shielding tensor obtained in a
least-squares analysis of the spectra as a function of CPMG
! pulse spacing and shown in Table I. Compared to the
Bloch decay, the uncertainty of extracted principal compo-
nents decreases using CPMG with the minimum uncertainty
obtained in the least-squares fit of the TOP-CPMG spectrum
with 2#=5.12 ms. More importantly, note that the principal
component uncertainty gets progressively larger with further
decrease in ! pulse spacing, even though the sensitivity of
the TOP-CPMG continues to increase with decreasing !
pulse spacing. The values of '11, '22, and '33 obtained
from the lowest standard deviation fit correspond to

(A)

(B)
2 τ = 1.28 ms 2 τ = 2.56 ms 2 τ = 5.12 ms 2 τ = 10.24 ms Bloch Decay

-3400 -3500 -3600 -3400 -3500 -3600 -3400 -3500 -3600 -3400 -3500 -3600

-3400 -3500 -3600 -3400 -3500 -3600 -3400 -3500 -3600 -3400 -3500 -3600 -3400 -3500 -3600

S/N = 9S/N = 14S/N = 36S/N = 83S/N = 132

207Pb Frequency/ppm 207Pb Frequency/ppm 207Pb Frequency/ppm 207Pb Frequency/ppm 207Pb Frequency/ppm

FIG. 4. The static CPMG experimental spectra of 207Pb resonance in Pb!NO3"2 powder sample as function of ! pulse spacing. !a" Processed using spikelet
approach of Larsen et al. !Ref. 4". !b" Processed using modified TOP !Ref. 11" data processing method. Also shown are the best-fit model lineshapes which
take signal truncation inside 2# acquisition window into account.

TABLE I. The principal components '11, '22, and '33 of the chemical shift
tensor and their associated errors obtained from a least-squares analysis of
the 207Pb TOP-CPMG spectra in Fig. 4 for a static sample of polycrystalline
Pb!NO3"2 as a function of the CPMG ! pulse spacing.

2#
!ms"

'11

!ppm"
'22

!ppm"
'33

!ppm" S/N

+ −3473.300 .05 −3476.000 .05 −3531.100 .17 9
10.24 −3471.800 .05 −3473.700 .04 −3527.400 .16 14
5.12 −3472.200 .02 −3473.300 .02 −3527.600 .07 36
2.56 −3470.000 .04 −3476.700 .04 −3527.500 .10 83
1.28 −3467.500 .17 −3473.600 .17 −3518.100 .21 132
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)s=−36.58 ppm and $s=0.02, which are in close agreement
with values of )s=−36 ppm and $s=0 reported by Neue
et al.15 Small differences in )s and $s may be attributed to the
high sensitivity of the 207Pb shielding tensor to
temperature.16

For a more detailed understanding of how the shielding
tensor parameter uncertainties depend on the CPMG ! pulse
spacing, we have simulated TOP-CPMG spectra using differ-
ent ! pulse spacing with constant total acquisition time, con-
stant added noise !pre-CPMG S/N is 2.3", and a constant
span of "=4.58 kHz. Least-squares analyses of simulated
TOP-CPMG spectra were performed using a shielding line-
shape model that takes the 2# acquisition truncation into ac-
count. The standard deviations for the three principal com-
ponents obtained in this analysis are plotted as a function of
" 2# in Fig. 5 for $s=0 and $s=1 cases. The rise in uncer-
tainty of the tensor parameters on the left side of the plots in
Fig. 5 comes from the signal truncation inside the 2# acqui-
sition, window while the rise in uncertainty on the right side
depends on the pre-CPMG signal-to-noise ratio !vide infra".

It is not surprising in the $s#0 case that the component
'33 is more susceptible to noise than '11 and '22 since it is
associated with the lowest intensity singularity. For similar
reasons both '11 and '33 in the $=1 case are more suscep-
tible to noise than '22, as observed by their higher uncertain-
ties in the high " 2# region. The minimum uncertainty oc-
curs at different " 2# values for different $s values, but
appears to occur at the same " 2# for all three components
of shielding tensor with a given $s. All the standard devia-

tion curves have a relatively shallow minimum, particularly
for the '22 component, which is always associated with the
singularity of strongest intensity. When reporting the range
of optimum " 2# values for a given lineshape, we report the
" 2# value with minimum standard deviation and set the
leftmost and rightmost limits as the " 2# value where the
standard deviation reaches a value 50% higher than the mini-
mum. Because of the asymmetry in the standard deviation
curves, the range limits are not equidistant from the mini-
mum " 2# value. Only the smallest range of the three tensor
components will be reported. The minimum uncertainties in
the $=0 case occur inside a range of " 2##12−1

+6, and in the
case of $=1 inside a range of " 2##9−3

+3.
As noted, the lower bound of the optimum " 2# value

arises from signal truncation and is fixed for a particular
lineshape, independent of the pre-CPMG signal-to-noise ra-
tio. Since the upper bound depends on the pre-CPMG signal-
to-noise ratio, we have further investigated this dependence
by simulating TOP-CPMG spectra with $s=1 and "
=4.58 kHz for two different pre-CPMG signal-to-noise ra-
tios as shown in Fig. 6. As the pre-CPMG signal-to-noise
ratio increases, the minima of the standard deviation curves
become shallower, causing the upper bound for optimum
range of " 2# values to increase. As seen in Fig. 6, increas-
ing the pre-CPMG signal-to-noise ratio from 2.30 to 6.84
expands the range from " 2##9−3

+3 to " 2##9−3
+7. Clearly,

further increases in the pre-CPMG sensitivity essentially
eliminate the need for CPMG acquisition in reducing uncer-
tainty in tensor parameter determinations. This is consistent
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FIG. 5. Standard deviation of 207Pb chemical shift tensor principal compo-
nents !'11, '22, '33" extracted from simulated 207Pb resonance CPMG spectra
as a function of " 2# for different $ while keeping span !"=4.58 kHz"
and pre-CPMG signal to noise ratio !S /N=2.30" constant.
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with conventional wisdom that the biggest gains with CPMG
acquisition come when the pre-CPMG signal suffers from
poor sensitivity. Conversely, as the sensitivity decreases the
minima of the standard deviation curves become deeper and
the range of optimum " 2# values decreases. In the light of
this insight, it may be worthwhile to extend the work of
Hodgkinson and Emsley8 to consider the effects of static
sample signal sensitivity in determining the optimum range
of MAS sidebands for extracting CSA tensor parameters.

B. Second-order quadrupolar coupling

The CT of half-integer spin nuclei is unaffected to first-
order by the quadrupole coupling and for sizable quadrupole
coupling constants experiences a second-order anisotropic
frequency contribution that is not completely removed by
MAS. The sensitivity of the CT spectrum of half-integer
quadrupole nuclei under both static and MAS can be signifi-
cantly enhanced with CPMG, so we have examined the op-
timum CPMG ! pulse spacing for measuring both nuclear
shielding and quadrupole coupling tensor parameters.

Since the nuclear shielding anisotropy is completely re-
moved by fast MAS, the quadrupole coupling constant Cq
and asymmetry parameter $q can be readily determined from
a least-squares analysis of the high speed CT MAS spectrum.
These parameters, in turn, can be used as constraints in a
least-squares analysis of the static sample CT spectrum to
obtain the shielding tensor parameters and the relative orien-
tation between the quadrupole and shielding tensors. In the
case of RbClO4, however, the 87Rb quadrupole coupling con-
stant is temperature dependent,17,18 and frictional heating
from the sample spinning is known18 to reduce the value of
87Rb quadrupole coupling constant in RbClO4. Thus, without
careful temperature control during MAS, systematic errors in
the nuclear shielding tensor parameters could be introduced

if the Cq and $q values obtained from MAS fit were used to
constrain the fit of the CT spectrum of a static RbClO4
sample at room temperature.

Experimental TOP-CPMG-MAS CT spectra of 87Rb
resonance from polycrystalline RbClO4 as a function of !
pulse spacing are shown in Fig. 7. To avoid interference with
the MAS averaging of anisotropies, it is important when
combining CPMG with MAS that the ! pulse spacing be
synchronized to be an integer multiple of the rotor period. As
expected, CPMG acquisition provides over an order of mag-
nitude sensitivity enhancement compared to the Bloch decay
experiment. Once again, notice that the lineshape distortions
due to signal truncation are more easily discernible in the
TOP-CPMG rather than the sideband spectrum. As before,
we include the effect of this signal truncation in the second-
order quadrupole MAS lineshape model to improve the least-
squares fit. These “best fit” lineshapes are also shown in Fig.
7 for the TOP-CPMG spectra. The dependence of the uncer-
tainty in Cq and $q on the CPMG ! pulse spacing is ob-
served in their standard deviations shown in Table II. The
CPMG ! pulse spacing that gives the minimum uncertainty
for Cq and $q values is 2#=2.56 ms, with values of 3.17

S/N = 680 S/N = 521 S/N= 306 S/N = 159

2 τ = 1.28 ms 2 τ = 2.56 ms 2 τ = 5.12 ms 2 τ = 10.24 ms Bloch Decay
S/N =72

(A)

(B)

87Rb Frequency (ppm) 87Rb Frequency (ppm) 87Rb Frequency (ppm) 87Rb Frequency (ppm) 87Rb Frequency (ppm)
0 -40 -80 0 -40 -80 0 -40 -80 0 -40 -80 0 -40 -80

0 -40 -80 0 -40 -80 0 -40 -80 0 -40 -80

FIG. 7. The CPMG-MAS experimental spectra of 87Rb resonance in RbClO4 powder sample as a function of ! pulse spacing, which was synchronized to the
rotor period of 80 %s !*R=12.5 kHz". !a" CPMG data processed by spikelet approach of Larsen et al. !Ref. 4". !b" CPMG data processed by TOP !Ref. 11"
approach. Also shown are the best-fit model lineshapes which take signal truncation inside 2# acquisition window into account.

TABLE II. The quadrupole coupling parameters Cq and $q and their asso-
ciated errors obtained from a least-squares analysis of the 87Rb TOP-CPMG
MAS spectra in Fig. 7 for a polycrystalline sample of RbClO4 as a function
of the CPMG ! pulse spacing.

2#
!ms"

Cq

!MHz" $q

'iso

!ppm" S/N

+ 3.154200 .0022 0.208600 .0013 −12.80200 .020 72
10.24 3.165100 .0012 0.207600 .0006 −12.81300 .010 159
5.12 3.169400 .0009 0.206500 .0006 −12.80900 .009 306
2.56 3.168100 .0009 0.203700 .0005 −12.95900 .008 521
1.28 3.207500 .0026 0.281600 .0016 −11.55300 .022 680
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MHz and 0.20, respectively. These values differ slightly from
the values of Cq=3.3 MHz and $q=0.21 obtained by Vose-
gaard et al.20 in their single-crystal study. Given the previ-
ously mentioned temperature dependence of Cq in RbClO4
this is not surprising. The 87Rb MAS CT spectrum has a span
of "q,MAS=4,399 Hz, so the minimum uncertainty is ob-
tained at "q,MAS2##11 in this set of experiments.

To better understand how CPMG acquisition affects the
uncertainty in Cq and $q, we have simulated 87Rb TOP-
CPMG-MAS spectra as a function of CPMG ! pulse spacing
for two different asymmetry parameters, $q=0.21 and $q

=1, while holding the span !"=4.48 kHz", pre-CPMG
signal-to-noise ratio, and the total acquisition time constant.
Plots of the standard deviations for Cq and $q as a function
of " 2# are shown in Fig. 8. The minimum uncertainties in
both Cq and $q occur in the range " 2##9−2

+3. There is a
general increase in uncertainty for both Cq and $q when $q

=1, which could be simply explained by the decrease in the
number and intensity of discontinuities in the CT MAS line-
shape when $q=1.

Finally, we examined the CPMG acquisition for the 87Rb
CT spectra of a static polycrystalline sample of RbClO4. The
TOP-CPMG CT spectra as a function of 2# are shown in Fig.
9. As before, lineshape distortions due to signal truncation
are more easily discernible in the TOP-CPMG spectrum than
the sideband spectrum. Using constraints of Cq=3.3 MHz
and $q=0.21 obtained from the single-crystal study,20 and
including the effects of signal truncation from the 2# acqui-
sition window, we performed a least-squares analysis of each
lineshape and obtained the nuclear shielding tensor param-
eters, )s, $s, and their relative orientations, ,, -, and ., to the
quadrupole tensor as a function of CPMG ! pulse spacing.
These values are shown in Table III. Although we have an
expression in Eq. !10" for the span of a CT lineshape in a
static sample due to second-order quadrupole interaction, we
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FIG. 8. The standard deviation of the 87Rb quadrupolar coupling constant
and asymmetry parameter extracted from simulated 207Pb resonance CPMG-
MAS spectra as a function of " 2# for $q=0.21 and $q=1, while keeping
span !"q,MAS=4.48 kHz" and pre-CPMG signal-to-noise ratio !S /N=6.93"
constant. A spinning speed of 12.5 kHz was used for simulation.

2 τ = 320 us 2 τ = 640 us 2 τ = 1.28 ms 2 τ= 2.56 ms Bloch Decay
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FIG. 9. The static CPMG experimental spectra of 87Rb resonance in RbClO4 powder sample as function of ! pulse spacing. Top row is processed using
spikelet approach of Larsen et al. !Ref. 4". The bottom row is processed using our modified TOP !Ref. 11" processing method. Also shown are the best-fit
model lineshapes which take signal truncation inside 2# acquisition window into account.
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are not aware of an analytical expression that includes the
effects of both quadrupole and nuclear shielding interactions.
Nonetheless, Eq. !10" could provide an approximate span if
an estimate of the quadrupolar coupling parameters is avail-
able. With the experimental span of "q,Static=18 kHz and a
minimum uncertainty found almost consistently at 2#
=640 %s for all parameters in the least-squares analysis of
the static TOP-CPMG lineshapes, we experimentally observe
that "q,Static2#=11.5. A value consistent with the optimum
range of values was observed for both the static nuclear
shielding lineshape and the MAS CT second-order quadru-
pole lineshape.

Table IV is a comparison between the parameters ob-
tained from our least-squares analysis of the TOP-CMPG
spectrum and single-crystal study of Vosegaard et al.20 The
values of )s and $s are very similar to the reported value
from single-crystal study, however, the values of ,, -, and .
are not fully in agreement with the single-crystal study. This
difference is simply attributed to the general ill-posed prob-
lem of fitting a CT spectrum of a static polycrystalline
sample for both nuclear shielding and quadrupole coupling
parameters and their relative tensor orientation. This chal-
lenge in analyzing CT anisotropic lineshapes in polycrystal-
line samples was the motivation behind the development of
the two-dimensional COASTER !Ref. 21" experiment which
cleanly separates the nuclear shielding and second-order
quadrupole anisotropic lineshapes, thereby eliminating the
covariance between nuclear shielding and quadrupole tensor
components, and significantly reducing model parameter un-
certainties.

V. SUMMARY

CPMG acquisition has become an increasingly popular
approach for increasing sensitivity of solid-state NMR spec-

tra that have significant inhomogeneous !i.e., anisotropic"
broadenings. While increasing sensitivity is important, in the
case of CPMG it comes with a loss of information about the
NMR spin interactions. We have attempted to quantify this
information loss in terms of the uncertainty of the NMR
interaction tensor parameters extracted in a least-squares
analysis of the CPMG-enhanced spectrum obtained as a
function of CPMG ! pulse spacing. To aid in this analysis
we introduce the use of TOP processing for the CPMG signal
echo train to obtain a more conventional powder pattern line-
shape, instead of using a direct Fourier transform of the echo
train signal which yields a sideband !or spikelet" spectrum.
The TOP processed CPMG spectrum also has the advantage
that the effect of signal truncation inside the 2# CPMG ac-
quisition window is readily discerned.

From our investigations of TOP-CPMG spectra with ex-
tensive least-squares analyses, we found for an anisotropic
nuclear shielding or chemical shift lineshape in a static
sample that the range of optimum ! pulse spacings which
minimize NMR parameter uncertainty while maximizing en-
hancement occur when " 2##12−1

+6 for $s=0 and " 2#
#9−3

+3 for $s=1, where 2# is the ! pulse spacing, " is the
span of the anisotropic lineshape, and $s is the asymmetry
parameter for the nuclear shielding tensor. For an anisotropic
second-order quadrupolar central transition lineshape under
MAS a range of " 2##9−2

+3, regardless of $q, minimized the
uncertainty when determining the quadrupole tensor param-
eters.

Generally, the optimum ! pulse spacing occurs in a
range of values asymmetrically spaced around " 2#&11,
regardless of the interactions contributing to the lineshape.
The analyses and conclusions described here are applicable

TABLE III. The 87Rb nuclear shielding parameters )s, $s, and the Euler angles ,, -, and . describing the
relative orientation of the nuclear shielding anisotropy tensor to the quadrupole tensor for 87Rb and their
associated errors obtained from a least-squares analysis of the 87Rb TOP-CPMG spectra spectra in Fig. 9 for a
static sample of polycrystalline RbClO4 as a function of the CPMG ! pulse spacing.

2#
!ms"

)s

!ppm" $s , - . S/N

+ 10.8500 .26 0.4100 .01 154.11° 04 .01° 33.68° 00 .79° 107.70° 02 .91° 14
2.56 12.3300 .17 0.4900 .03 153.53° 02 .92° 21.31° 00 .59° 77.35° 04 .01° 17
1.28 12.3500 .19 0.6000 .02 150.67° 02 .86° 16.61° 00 .55° 66.97° 03 .95° 32
0.640 13.1800 .11 0.6600 .04 123.76° 02 .52° 15.86° 00 .51° 100.16° 03 .15° 58
0.320 16.1100 .41 0.9200 .07 107.13° 05 .15° 27.49° 01 .25° 151.09° 04 .79° 141

TABLE IV. Comparison of previously measured 87Rb nuclear shielding anisotropy !)s, $s" and the relative
orientations !,, -, ." of the nuclear shielding anisotropy tensor to the quadrupole tensor in RbClO4. Values in
this work were obtained for 87Rb resonance in RbClO4 powder by fitting the static CPMG spectra with the
quadrupole coupling principal components constrained to Cq=3.3 MHz and $q=0.21. The definition of
!, ,- ,." is in accord with the definition used in Ref. 19.

Method
)s

!ppm" $s , - . Reference

Static powder 13.1800 .11 0.6600 .04 123.76° 02 .52° 15.86° 00 .51° 100.16° 03 .15° This work
Single-crystal 13.8001 .50 0.6100 .24 94.00° 014 .0° 28.00° 04 .00° 87.00° 05 .00° 18
Static powder 1402 0.500 .3 112.00° 06 .0° 28.80° 01 .5° 16.00° 04 .00° 19

054501-8 Dey et al. J. Chem. Phys. 133, 054501 "2010!

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



to any CMPG-enhanced solid-state NMR experiment and
thus should serve to reduce significantly experimental setup
and optimization times.
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APPENDIX A: PERIODIC SIGNALS AND SIDEBANDS

In this section we will consider the relationship between
a periodic signal and the sideband pattern in its Fourier trans-
form. First, we write a Fourier series expansion of the peri-
odic signal according to

ST!t" = ,
N=−+

+

A!N"ei2!Nt/T, !A1"

whose Fourier transform is

ST!/" = -
−+

+

ST!t"e−i/tdt = ,
N=−+

+

A!N"'!2!N/T − /" ,

!A2"

where T is the signal period and A!N" is the amplitude of the
Nth sideband in ST!/".

Next, we define ST!t" as a periodic extension of a signal,
S!t", defined only inside a period from t=0 to T, according to

ST!t" = ,
n=−+

+

S!t + nT" , !A3"

whose Fourier transform is

ST!/" = -
−+

+ ( ,
n=−+

+

S!t + nT")e−i/tdt . !A4"

Performing a change in variables, defining s= t+nT, and ds
=dt, we obtain

ST!/" = ,
n=−+

+ -
−+

+

S!s"e−i/!s−nT"ds . !A5"

Since S!t" is defined only inside a period from t=0 to T, we
can redefine the integral limits, obtaining

ST!/" = ,
n=−+

+ (-
0

T

S!s"e−i/sds)ein/T. !A6"

Equating the two expressions for the Fourier transform of
ST!t",

A!N"'!2!N/T − /" = (-
0

T

S!s"e−i/sds)ein/T, !A7"

we obtain

A!N" = -
0

T

S!s"e−i2!Ns/Tds , !A8"

as the relationship between the Nth sideband in ST!/" and
the signal S!t" defined inside the period from t=0 to T.

APPENDIX B: CPMG SIGNAL

The CPMG signal arises from the two coherence transfer
pathways shown in Fig. 1. Signal from a given pathway is
detected only while its coherence level is p=−1. Both path-
way signals experience a time dependent frequency with a
period of 4#, where 2# is the CPMG ! pulse spacing. As
shown in Fig. 10!a", we can describe the time dependent
frequencies for the two pathway signals as

"0!t" = 0 W!,,-,."Sq!2!t/4#" , !B1"

where Sq!x" is a square wave function and 4# is the cycle
time of the frequency for the two pathway signals. As the
integral of a square wave is a triangular wave, the signal
phases for the two pathways, shown in Fig. 10!b", are given
by

10!t" = 0 W!,,-,."# Tg!2!t/4#" , !B2"

where Tg!x" is a triangle wave function. A CPMG echo oc-
curs whenever the signal phase returns to zero. Since the
signals from the two pathways are detected alternatively, the
detected signal phase, shown in Fig. 10!c", is given by

1!t" = W!,,-,."#(Tg*2!t

2#
− !+ + 1) , !B3"

which has a period of T=2#. Thus, the detected CPMG sig-
nal inside the 0–2# period is given by

S!t" = e−iW!,,-,."!#−'t−#'". !B4"
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