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We explain how and under which conditions it is possible to obtain an efficient inversion of an entire
sideband family of several hundred kHz using low-power, sideband-selective adiabatic pulses, and
we illustrate with some experimental results how this framework opens new avenues in solid-state
NMR for manipulating spin systems with wide spinning-sideband (SSB) manifolds. This is achieved
through the definition of the criteria of phase and amplitude modulation for designing an adiabatic
inversion pulse for rotating solids. In turn, this is based on a framework for representing the Hamil-
tonian of the spin system in an NMR experiment under magic angle spinning (MAS). Following
earlier ideas from Caravatti et al. [J. Magn. Reson. 55, 88 (1983)], the so-called “jolting frame” is
used, which is the interaction frame of the anisotropic interaction giving rise to the SSB manifold. In
the jolting frame, the shift modulation affecting the nuclear spin is removed, while the Hamiltonian
corresponding to the RF field is frequency modulated and acquires a spinning-sideband pattern, spe-
cific for each crystallite orientation. © 2011 American Institute of Physics. [doi:10.1063/1.3521491]

I. INTRODUCTION

Over the last 20 years, impressive progress in magnet and
magic angle spinning (MAS) probe technology and radio fre-
quency (RF) irradiation schemes has revolutionized the solid-
state NMR field, opening it to the structural characterization
of a large variety of systems in many areas of modern chem-
istry, biology, and material sciences.1–4

One key barrier to further progress in the studies of sev-
eral classes of new substrates is represented by the difficulty
to excite and invert signals with extremely large shifts and
shift anisotropies. One possible solution to achieving broad-
band inversion is to use swept-frequency adiabatic pulses
which are widely used in solution state experiments, for
instance, for facilitating heteronuclear decoupling,5–8 or in
many applications in magnetic resonance imaging.9 These
pulses give very high bandwidths in relation to the RF power
used, and have been shown to be very tolerant of instrumen-
tal imperfections such as spatial inhomogeneity of the RF
field.9, 10

A broad palette of MAS experiments involving adiabatic
pulses has recently been proposed in solid-state NMR. Ap-
plications embrace widely different areas, from biological
macromolecules,11 to paramagnetic solids.12 Even more re-
cently, the use of adiabatic pulses has gained interest in the
field of NMR of quadrupolar nuclei under MAS. Wasylishen
et al.13–15 have demonstrated an intriguing new application
showing that the irradiation of a single sideband of a satellite
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transition with a hyperbolic–secant pulse16 can result in com-
plete inversion of the entire sideband pattern, resulting in an
enhancement of the signal of the central transition. It has also
been shown17 that the use of a WURST pulse7 can provide
an even greater enhancement of this transition. This opens
completely new perspectives for the use of adiabatic pulses
in solids, where they can deliver an even more broadband ex-
citation than in solution.

Despite this flourishing literature on new experimental
schemes, no theoretical description of adiabatic pulses under
MAS has been proposed so far. The treatment of adiabatic
pulses in rotating solids is not straightforward, as the picture is
deeply perturbed by the shift modulation imposed by the sam-
ple rotation. Consequently, in solids, the “modulated frame”
approach,16 which is commonly employed in solution-state
NMR, provides a good description only in the limit of moder-
ate shift anisotropies or of moderate spinning speeds,11 or in
the case of the short high-power adiabatic pulses (SHAPs).12

In the following, we introduce a framework for repre-
senting the Hamiltonian of the spin system in an NMR ex-
periment under MAS. Following earlier ideas from Caravatti
et al.,18 we use here the so-called “jolting frame,” which is
the frame of the anisotropic interaction giving rise to the spin-
ning sideband (SSB) manifold. In the jolting frame, the shift
modulation affecting the nuclear spin is removed, while the
Hamiltonian corresponding to the RF field is frequency mod-
ulated and acquires a SSB pattern, specific for each crystallite
orientation.

This representation allows to easily define the criteria of
phase and amplitude modulation for designing an adiabatic
inversion pulse in rotating solids. Notably, we demonstrate
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FIG. 1. Fourier decomposition of the B1 field in the rotating and jolting frames. (a) shows the evolution of the magnetization in the rotating frame, which gives
the FID in (b). The Fourier transform of this trajectory gives a sideband pattern (c). The representation of B1 in the jolting frame (d) produces a trajectory which
is the conjugate of the FID (e), therefore its Fourier transform gives a mirror image spectrum (f).

that the ratio between the RF power and the achieved band-
width under MAS can be even more impressive than the
solution-state counterpart, showing that efficient inversion
of entire sideband families of several hundred kHz can be
achieved using low-power (10–60 kHz), single-sideband-
selective adiabatic pulses.

II. THE JOLTING FRAME

A. General principle

Generally, most NMR experiments are evaluated in the
so-called “rotating frame,” which is a frame of reference
which rotates about the z-axis of the laboratory frame at the
RF carrier frequency ωr f . This is convenient because the res-
onant component B1 of the RF field is stationary with a phase
ϕp, and the magnetization M appears to evolve under a re-
duced magnetic field at the offset frequency #c,19 producing
the free induction decay (FID). In a solid-state experiment un-
der MAS, the rotation of the sample imposes a periodic time
modulation of the anisotropic part of the Hamiltonian (e.g.,
the chemical shift anisotropy), which gives rise to an oscillat-
ing motion of the magnetization about the reduced magnetic
field along z, and acquires a periodic phase ϕc(t) in addition
to the phase due to the isotropic shift. The oscillatory part re-
sults in a spectrum comprising a series of sidebands separated
by the MAS frequency. This is shown in Figs. 1(a)–1(c).

The “jolting frame” is a rotating frame following the evo-
lution of the magnetization during a period of free preces-
sion. In this frame, the apparent chemical shift is zero at all
times, and the B1 field acquires a phase −ϕc(t) in addition to
ϕp, and so it appears to evolve at the negative of the chem-
ical shift as measured in the rotating frame. The representa-
tion of B1 in the jolting frame [Fig. 1(e)] corresponds to the

time reversal of the FID in panel (b), and its Fourier transform
panel (f) gives a sideband pattern which is the mirror image
of that encoded in the FID panel (c).

B. Interaction representation of the shift anisotropy

The idea of single-sideband irradiation was first pro-
posed by Caravatti et al.18 who used a selective DANTE
sequence20, 21 to selectively invert a single sideband under
moderate MAS frequencies.

For the present purpose, we can restrict the discussion to
a single spin I with a shift anisotropy (SA) tensor in a single
crystallite. This interaction is modulated during MAS by the
function #c(t) which is given by:22

#c(t) =
+2∑

k=−2

ωk (α,β, γ ) exp(−ikωrt), (1)

where the coefficients ωk (α,β, γ ) are given by:

ωk (α,β, γ ) =
√

2
3

+2∑

k ′=−2

ρ2k ′ exp(−ik ′α)d2
k ′k(β)

× exp(−ikγ )d2
k0(θM) + #isoδk0. (2)

The Euler angles (α,β, γ ) relate the principal axis frame
(PAF) of the SA tensor to the rotor frame, and d2

k ′k(θ ) are the
elements of the reduced Wigner rotation matrices. The angle
between the rotor axis and the external magnetic field B0 is
the magic angle θM, which has value arctan (

√
2). Finally, the

spatial components of the SA tensor in the PAF are given by
ρ2k , which in terms of the principal Cartesian values σi i in the
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PAF are:

ρ20 = −
√

3
2ω0(σzz − σiso) =

√
3
2+, (3)

ρ2±1 = 0, (4)

ρ2±2 = − 1
2ω0(σxx − σyy) = − 1

2η+, (5)

where ω0 = −γI B0 is the Larmor frequency of the spin, γI

is the gyromagnetic ratio, and σiso is the isotropic shielding,
which is given by

σiso = 1
3 (σxx + σyy + σzz). (6)

Thus, the interaction is described in terms of the anisotropy
+ = −ω0(σzz − σiso), the asymmetry η = (σxx − σyy)/(σzz

− σiso), and an isotropic shift which, in the rotating
reference frame, is given by #iso = ω0(1 − σiso) + ωrf, where
ωrf = −ω0 (for γ > 0) is the carrier frequency of the RF
transmitter (which coincides with the receiver reference
frequency).

If we apply a radio frequency pulse with field ω1 and
time-dependent phase φp(t), the Hamiltonian is given by

Ĥ (t) = #c(t) Îz + ω1 R̂z(φp(t)) Îx R̂z(φp(t))−1, (7)

where Îi is the component of the I -spin angular momentum
along axis i , and R̂z(θ ) is the operator representing a rotation
of the spin through angle θ about the z-axis. We now trans-
form into the jolting frame, which follows the evolution of the
magnetization that is due to the anisotropic shift, resulting in
the removal of the term in Îz . However, this time dependence
is transferred to the RF term, thus giving the phase of the pulse
an additional time-dependent term. The operator representing
the transformation is V̂ (t) = exp(−iφc(t) Îz) where

φc(t) = #isot +
∫ t

0

∑

k %=0

ωk (α,β, γ ) exp(−ikωrt ′) dt ′ (8)

is the phase accumulated due to the evolution of the shift. In
this frame, the Hamiltonian becomes:

ˆ̃H (t) = V̂ (t)−1 Ĥ (t)V̂ (t) − #c(t) Îz

= ω1 R̂z(φp(t) − φc(t)) Îx R̂z(φp(t) − φc(t))−1. (9)

As shown by Caravatti et al., the above expression can
be rewritten to give a very useful result.18 It is well known
that during a period of free precession the magnetization of
a particular spin, as measured in the rotating frame, is split
into a series of components. Each component evolves at a
frequency that deviates from the isotropic shift by a multiple
of the spinning frequency, and thus the whole series gives a
set of spinning sidebands. In operator notation, this can be
represented as

R̂z(φc(t)) Îx R̂z(φc(t))−1 =
+∞∑

m=−∞
Am R̂z(φm + (#iso + mωr)t)

× Îx R̂z(φm + (#iso + mωr)t)−1,

(10)

where Am and φm are the intensity and phase of the mth
sideband. These complex sideband intensities are Fourier

coefficients, which are given by the integral expression:

Am exp(iφm)

= 1
τr

∫ τr

0
exp



−
∑

k %=0

ωk (α,β, γ )(exp(−ikωrt) − 1)
kωr





× exp(−imωrt) dt, (11)

where τr = 2π/ωr is one rotor period. It proves useful at this
point to introduce the concept of a carousel of crystallites,23

which is the set of crystallites that occupy the same positions
during sample rotation, but at different times. For a powdered
sample, such crystallites share the same values of the Euler
angles α and β, but have different Euler angles γ . This
behavior allows us to derive the variation of the sideband
intensities and phases with γ . The resulting variation of the
sideband phases is:

φm(α,β, γ ) = φm(α,β, 0)

−
∑

k %=0

ωk (α,β, 0) (exp(−ikγ ) − 1)
−ikωr

+ mγ ,

(12)

where we have written the phases explicitly as functions of
the three angles. By contrast, the sideband intensities Am are
independent of γ .

Equation (10) is then substituted into Eq. (9), while not-
ing that in the latter the shift evolution is in the opposite sense,
to give

ˆ̃H (t) = ω1

+∞∑

m=−∞
Am R̂z(φp(t) − φm − #isot − mωrt)

× Îx R̂z(φp(t) − φm − #isot − mωrt)−1. (13)

If the selective pulse is applied to the nth-order sideband, the
pulse phase can be expressed as φp(t) = (#iso + nωr)t , and
the Hamiltonian becomes

ˆ̃H (t) = ω1

+∞∑

m=−∞
Am R̂z((n − m)ωrt − φm)

× Îx R̂z((n − m)ωrt − φm)−1. (14)

C. Low-power approximation

Caravatti et al. showed that if the applied RF field is
much lower than the spinning rate, i.e., ω1 ' ωr, the time-
dependent terms in the sideband expansion of the RF field in
Eq. (14) can be discarded. It is worth noting that the same
logic is used to discard the nonresonant term in the RF field
of a conventional pulse on transforming from the laboratory
reference frame to the standard rotating frame. The resulting
Hamiltonian acquires a very simple form

ˆ̃H = ω1 An R̂z(−φn) Îx R̂z(−φn)−1, (15)

which represents a simple RF pulse with phase −φn and an
applied magnetic field that is scaled down by the relative
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intensity of the irradiated sideband An . Note that if the pulse
is applied for a time tp the magnetization of the spins is ro-
tated by a flip angle ω1 Antp. Despite the pulse being applied
to a single sideband, the irradiation is transmitted to the whole
pattern.

The scaling of the power reflects the fact that the instanta-
neous shift of the spin has a value such that the magnetization
is able to be rotated by the RF field only for a fraction of the
duration of the pulse. This fraction is, of course, given by the
fraction of the rotor period within which the spin ‘occupies’
the irradiated sideband, namely An .

III. SINGLE-SIDEBAND INVERSION
BY ADIABATIC PULSES

A. Swept-frequency pulses in the jolting frame

In light of the above discussion, we realize that the
pattern of sideband intensities varies with the crystallite ori-
entation and so if we irradiate a particular sideband with a
conventional pulse, it will be impossible to achieve the same
rotation angle for all the crystallites simultaneously. However,
we can, in principle, obtain a perfect 180◦ rotation by apply-
ing a swept-frequency adiabatic pulse to a particular sideband.
The beauty of such a single-sideband selective pulse (S3AP) is
that, provided the RF field is above a certain threshold value,
so that the adiabaticity condition is satisfied, we obtain perfect
inversion regardless of the exact value of the field.

For an adiabatic frequency sweep through the nth side-
band, the Hamiltonian in the jolting frame has a similar form
to Eq. (14):

ˆ̃H (t) = ω1(t)
+∞∑

m=−∞
Am R̂z(φ(t) + (n − m)ωrt − φm)

× Îx R̂z(φ(t) + (n − m)ωrt − φm)−1. (16)

The differences are that the amplitude profile of the pulse
ω1(t) is now time dependent, and that we have also included
a phase factor φ(t) that accounts for the frequency sweep.

The Hamiltonian in Eq. (16) describes a mechanism for
adiabatic inversion in MAS solids which is radically differ-
ent from the adiabatic schemes commonly employed in solid-
state NMR (e.g., SHAPs). This is illustrated in Fig. 2, which
sketches the two alternative ways in which S3AP and SHAP
achieve broadband inversion of a single crystallite.

A traditional adiabatic pulse sweeps through a range of
frequencies that is much greater than the entire spectrum (i.e.,
a SHAP in MAS solids typically sweeps through 1–10 MHz).
This is indicated in (a) which shows the spectrum of a single
crystallite with an axially-symmetric SA tensor and where the
arrow indicates the direction and range of the sweep. By com-
parison, the S3AP sweeps through a single sideband, in this
case the centerband, as shown (b). The magnetization trajecto-
ries induced by the two pulses are very different, as shown by
the grapefruit diagrams for a SHAP in (c), and for the S3AP in
(d). The variations of the z-magnetization have been extracted
and are shown in (e)–(f). During a SHAP, the magnetization

follows a similar pathway to that expected for inversion of
a solution-state system (e), where the deviations can be ex-
plained by the perturbing effect of the MAS modulation of
the SA on the effective field during the sweep. It is there-
fore possible to predict the inversion performance by refer-
ence to the traditional adiabatic condition,9 while accounting
for the MAS, or performing a more sophisticated calculation
in a superadiabatic frame of Ref. 26. By contrast, the path due
to the S3AP (f) is more complicated, and if analyzed in the
standard way appears to be nonadiabatic. However, as can be
seen in the plot of the z-magnetization against time, the mo-
tion can be separated into a smooth inversion upon which is
superimposed a rapid oscillation. As detailed in the following
sections, the rapid oscillations may be neglected, leaving the
smooth variation which is indeed adiabatic.

B. Low-power adiabatic pulses

We can now apply a variation of the low-power approxi-
mation to simplify the Hamiltonian. There are two conditions
that must be met in this case: first, as before the RF power
must be low enough so that the neighboring sidebands are
unaffected (ω1(t) ' ωr); and second, the range of frequen-
cies through which we sweep must only contain the chosen
sideband. Together, these requirements can be quantified to
give the following condition which must be met at all times:
|ωr − φ̇(t)| ) ω1(t). If this is the case, we can approximate
Eq. (16) with the first-order average Hamiltonian:

ˆ̃H = ω1(t)An R̂z(φ(t) − φn) Îx R̂z(φ(t) − φn)−1. (17)

In complete analogy with the result for a square pulse, this
represents a swept-frequency pulse in which the RF field has
been scaled down by the intensity of the irradiated sideband.
As was seen in Fig. 2, the response of the density operator
can be separated into two parts: a smooth variation which, if
adiabatic, delivers complete broadband inversion, and a rapid
oscillation which is superimposed upon the former variation.
The term that is retained in the low-power approximation is
responsible for the former, while the oscillating fields produce
the latter.

C. Adiabaticity conditions

When dealing with adiabatic pulses in NMR, an adia-
baticity condition is often used to determine whether or not
perfect inversion is achieved on a given spectrum.

Traditionally, this condition states that efficient inversion
is achieved whenever the effective field of the pulse ωeff(t)
is greater than the rate of change dθ (t)/dt of its tilt angle
from the z-axis of the modulated frame.9 This criterium is
expressed in terms of a quality factor Q:

1
Q

=
∣∣∣∣

θ̇ (t)
ωeff(t)

∣∣∣∣ . (18)

In this formalism, good inversion is predicted when
Q ) 1. Recently, we have introduced the notion of supera-
diabaticity and illustrated the fact that the traditional Q factor
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FIG. 2. Comparison of SHAP (left) and S3AP (right) in obtaining broadband inversion of a single crystallite with an axially-symmetric SA tensor under
MAS. The simulated spectra (a-b), magnetization trajectories (c-d), and the variation of the z-magnetization during the pulse (e-f) are shown for a SHAP
(a,c,e) and a S3AP (b,d,f). The anisotropy of the SA tensor is 100 kHz, and the rate of MAS is 40 kHz. The Euler angles relating the PAF to the rotor
frame of the single crystallite are (α,β, γ ) = (0, θM, 0), where θM is the magic angle. The SHAP is a tan/tanh pulse (Refs. 10 and 24) which sweeps through
10 MHz in 50 µs with a peak RF field of 200 kHz, while S3AP is a WURST-20 pulse (Ref. 7) which sweeps through 30 kHz in 5 ms with an RF field of
10 kHz. The simulations were performed using SPINEVOLUTION (Ref. 25).

is not a proper indicator of the adiabaticity of a pulse.26 We
have shown that efficient resonance inversion can be achieved
whenever the magnetization is sufficiently well locked, not
by the effective field in the conventional modulated frame,
but rather by the effective field ωeff,k(t) in an adiabatic rep-
resentation (xk, yk, zk). This has led us to re-state the adia-
baticity condition in terms of a superadiabatic quality factor
s Q, which monitors the minimal rate of change dθk(t)/dt of
the tilt angle of the effective field from the z-axis of the kth
modulated frame:

1
s Q

= mink
1

Qk
=

∣∣∣∣
θ̇k(t)

ωeff,k(t)

∣∣∣∣ . (19)

Good inversion is predicted when s Q ) 1.

The above equations introduce values for the effective
fields, above which all RF pulses achieve complete inver-
sion. For a given pulse, this means that there is a value of
ω1 above which inversion is 100% efficient. In the case of
single-sideband inversion, in conditions where the low-power
approximation applies, the RF intensity is scaled down by
A(i)

n , which represents the intensity of the irradiated side-
band for the crystallite i . This results in the reduction of
the quality factor s Q. A new adiabaticity condition needs
thus to be defined, which applies to each specific crystallite.
This means that, for a certain set of pulse parameters, per-
fect inversion will be observed for all crystallites for which
the intensity of the irradiated sideband is above a certain
value.
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FIG. 3. Illustration of the correlation between the intensity of the centerband A0 and the degree of expected inversion for an axially-symmetric SA tensor. The
plots in (a)–(c) show A0 for an anisotropy of 100 kHz as a function of the Euler angle β at spinning frequencies of 20, 30, and 40 kHz. The other plots give
the value of Mz as a function of β at RF powers of (d)–(f) 3 kHz, (g)–(i) 5 kHz, (j)–(l) 10 kHz, and (m)–(o) 30 kHz, as calculated with SPINEVOLUTION
(Ref. 25). The pulse is a WURST-20 (Ref. 7) which sweeps through a range of 30 kHz in 5 ms.

When deciding which sideband to irradiate, it should
be noted that some crystallites possess sideband patterns
in which some of the sidebands have zero intensity. For
example, we may consider the case of a crystallite with an
axially symmetric shift tensor. If the Euler angle β relat-
ing the principle axis frame to the rotor frame has a value
of zero, the shift is equal to the isotropic value at all times
during the rotor period, and so all the sideband intensity is
concentrated solely in the centerband. In this case, obtain-
ing any degree of inversion is only possible if we irradi-
ate the centerband. In addition, if we consider an arbitrary
crystallite, it is found that increasing the spinning rate of
the sample increases the intensity of the centerband at the
expense of the other sidebands. Both of these observations
indicate that in order to achieve complete inversion of the
sideband pattern of the whole powder, the best choice of ir-
radiated sideband is the centerband. Therefore, in order to
obtain complete inversion of the powder, it is necessary to
choose experimental conditions for which every crystallite is
inverted.

Figure 3 shows the intensity of the centerband as a func-
tion of β at different spinning speeds for a single spin with
an axially-symmetric shift tensor of 100 kHz anisotropy. For
such a tensor, the centerband intensity is a function of β only.
The inversion profiles of an adiabatic pulse as a function of
this angle were calculated using SPINEVOLUTION.25 The
chosen pulse was a WURST-20 which swept through 30 kHz
in 5 ms.7

For all spinning frequencies, it can be seen that increasing
the RF field results in complete inversion for a greater propor-
tion of crystallites with lower-intensity centerbands, as can be
seen in Figs. 3(d), 3(g), and 3(m). At 20 kHz MAS some crys-
tallite orientations have a centerband intensity close to zero,
as shown in (a), and consequently the adiabaticity condition
cannot be fulfilled for these angles. Similar behavior is ob-
served at 30 kHz MAS, in which the minimum centerband
intensity is 3%, where increasing the RF power from 3 kHz in
(e) to 5 kHz (h), and then 10 kHz (k) gives total inversion for
a greater range of β angles.

At higher spinning speeds, a greater proportion of the
spectral intensity is located in the centerband, and so the min-
imum centerband intensity present in the powder is greater.
Therefore, the adiabatic condition for crystallites with the
minimum centerband intensity can be reached with a lower
RF field. For example, perfect inversion can be obtained un-
der 40 kHz MAS by increasing the RF power from 3 kHz,
as shown in (f), to 5 kHz as shown in (i). Increasing the
power further to 10 kHz (l), and then to 30 kHz (o) still pro-
vides perfect inversion. Furthermore, increasing the spinning
rate increases the separation between neighboring sidebands,
which means that we remain within the low-power approxi-
mation with a higher-power RF pulse. If we increase the RF
power to 30 kHz, as is shown in (m), (n), and (o) we start
to see some counter-intuitive behavior, in that some crystal-
lites experience a different degree of inversion from what is
expected. The most striking example is at 30 kHz MAS in
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(n), where the crystallite at β = 45◦ with a low-intensity cen-
terband experiences complete inversion, whereas the crystal-
lites at 32 and 58◦ are not inverted at all. These observa-
tions can be explained by noting that at this RF power, the
low-power approximation is violated and the neighboring
sidebands must be taken into account, as detailed in the fol-
lowing section.

IV. SINGLE-MODE FLOQUET REPRESENTATION
IN THE JOLTING FRAME

A. Effective Hamiltonian in the jolting frame

Although the evolution of the RF field is rather compli-
cated, the overall effect of the Hamiltonian beyond the low-
power approximation can be studied either by applying the
average Hamiltonian theory (AHT),27 or single-mode
operator-based Floquet theory,28–31 where the Hamiltonian is
approximated by a time-independent effective Hamiltonian
Ĥ . The use of AHT is valid only if we calculate the density
operator at multiples of the period of the Hamiltonian.30 How-
ever, in practice the RF amplitude and phase of the adiabatic
pulse are digitized more finely in order to generate expected
inversion, and the restriction to stroboscopic sampling every
rotor period is too restrictive. For this reason, we adopt Flo-
quet theory to explain the effects of the pulse. The derivation
of the effective Hamiltonian is generally a very complex task
which is well-documented in the literature,28–31 and will not
be repeated here. However, we will use the final expressions.

To proceed, we must first express the Hamiltonian in
Eq. (13) in the following form:

ˆ̃H (t) =
+∞∑

p=−∞
Ĥp exp(ipωrt), (20)

where Ĥp are operators satisfying the relation Ĥ−p = Ĥ∗
p .

Writing Eq. (13) in terms of the raising and lowering opera-
tors Î+ and Î− gives the desired result, with Ĥp being given
by:

Ĥp = 1
2ω1(An+p exp(+iφn+p) Î+ + An−p exp(−iφn−p) Î−),

(21)

where p = m − n.
The effective Hamiltonian Ĥ is equal to a sum of effec-

tive Hamiltonians Ĥ (i) of orders i :31

Ĥ =
∞∑

i=1

Ĥ (i). (22)

The first three terms in the expansion of the effective Hamil-
tonian can now be written in terms of Ĥp:

Ĥ (1) = Ĥ0, (23)

Ĥ (2) = −1
2

∑

p %=0

[Ĥ−p, Ĥp]
pωr

, (24)

Ĥ (3) = −1
2

∑

p %=0

[[Ĥ0, Ĥp], Ĥ−p]
p2ω2

r

− 1
3

∑

p %=0

∑

p′ %=p %=0

[[Ĥp−p′ , Ĥp′ ], Ĥ−p]
pp′ω2

r
. (25)

The sideband phases can be rewritten according to
Eq. (11). For an axially-symmetric SA tensor, such as we
are studying here, all the terms are independent of α. The
first term is simply the sideband phase for γ = 0, and for
an axially-symmetric tensor can only take the values 0 or
π . It is therefore removed from the above expression, and
accounted for by allowing the sideband intensities Am to
be either positive (φm(α,β, 0) = 0) or negative (φm(α,β, 0)
= π ). The second term is the phase acquired due to the
SA evolution up to time γ /ωr. It is constant for all side-
bands of a given crystallite, and only affects the absolute
phase of the RF field. It is therefore neglected in the fol-
lowing. The third term, however, is very important as it de-
termines how the relative phase varies across the sideband
pattern.

For an axially-symmetric SA tensor, the first three effec-
tive Hamiltonians are:

Ĥ (1) = ω1(t)An R̂z(φ(t) − φn) Îx R̂z(φ(t) − φn)−1, (26)

ˆ̃H
(2)

= ω1(t)2

4ωr

∑

p %=0

A2
n+p − A2

n−p

p
Îz, (27)

ˆ̃H
(3)

= −ω1(t)3

8ω2
r

∑

p %=0

A0(An−p − An+p)2

p2
R̂z(φ(t) − φn) Îx R̂z(φ(t) − φn)−1

−ω1(t)3

12ω2
r

∑

p %=0

∑

p′ %=p %=0

(An−p − An+p)(An−p′ An+p−p′ − An+p′ An−p+p′ )
pp′ R̂z(φ(t) − φn) Îx R̂z(φ(t) − φn)−1, (28)

assuming that the time variation of the sweep phase φ(t) and
the amplitude profile ω1(t) is slow compared to the oscilla-
tion due to the sample rotation. Note that the slow time de-
pendence of φ(t) and ω1(t) results in a time variation of all

the terms of the average Hamiltonian during the pulse. More
details regarding the derivation can be found in the Appendix.

If the low-power condition is not met at all times, the
higher order terms may come into play. The second-order
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FIG. 4. Simulated variation of the z-magnetization of selected crystallites during an adiabatic pulse. The simulated sideband patterns for three crystallites
(a)–(c) and the powder (d) are calculated for an axially-symmetric shift tensor of 100 kHz anisotropy, spinning with a MAS rate of 30 kHz. The three crystallites
differ in the value of β which relates the principal axis frame to the rotor frame; the other two angles are both zero. The values of β are (a) 10◦, (b) 30◦, and
(c) 45◦. (e)–(l) Simulated comparison of the variation of the z-magnetization of the selected crystallites and powder during an S3AP (WURST–20 sweeping
through 30 kHz in 5 ms) with two different RF field strengths, with the expected variation if the low-power approximation were valid. (e)–(h) Inversion profiles
for a pulse with ω1/(2π ) = 3 kHz. (i)–(l) Inversions produced with a field of ω1/(2π ) = 30 kHz. The profiles for the single crystallite are shown in blue.
Averaging over the angle γ gives the profiles in yellow, while the profiles generated assuming the low-power approximation are in red. The average over the
powder was calculated using 109 (α,β) pairs following the Lebedev octant scheme in (d) (Ref. 32). The superadiabatic and traditional quality factors are
calculated for each crystallite accounting for the scaling of the RF field. The numerical values (s Q and Q) for the combination of crystallites and RF field
shown are: (e) 264 and 6.71, (f) 0.97 and 0.37, (g) 0.43 and 6.7 × 10−3, (i) 9.67 × 105 and 35, (j) 1.15 × 106 and 37, and (k) 1.51 and 0.67. See text for further
details.

average Hamiltonian simply represents a Bloch–Siegert
shift,19 the effect of which, in the absence of relaxation, is
to shift the time at which the z-magnetization passes through
zero. We observe that if the sideband intensities are symmet-
rical about the irradiated sideband (that is An−p = An+p for
all p), this term is zero.

The third-order term represents an RF field, and is of
more interest in the present discussion. We note that it is
applied along the same axis as the first-order field, and so
can add either constructively or destructively to the latter.
Both of these fields retain the time-dependent phase φ(t)
of the adiabatic sweep, and so the total Hamiltonian rep-
resents an adiabatic pulse with a modified RF field acting
on a single, isolated, isotropic spin whose offset has been
shifted by the Bloch–Siegert term. We note that second-
order effective Hamiltonian depends on the difference of the
squares of pairs of sideband intensities, and would affect the
degree of inversion only under very high-power irradiation
(ω1 ) ωr ).

It is important to note that the size of the RF field and the
Bloch–Siegert shift are independent of γ , the consequence of
which is that all crystallites within a given carousel experience
the same degree of inversion.

B. Effects of neighboring sidebands

The most obvious way of obtaining the maximum degree
of inversion in the spectrum of the powder is to increase the

RF field so that the adiabatic condition is fulfilled by a greater
quantity of the crystallites with low centerband intensities.
However, in practice there is a limit to this, since if the RF
field is increased to the point where the low-power approxi-
mation is no longer valid, we must consider the effect of the
neighboring sidebands. It should be noted that even though
the neighboring sidebands still lie outside the band width
of the pulse, this does not mean that they do not interfere with
the irradiation of the centerband.

Figure 4 shows the simulated time variation of the z-
magnetization during an S3AP. The simulated sideband pat-
terns in (a)–(c), the magnetization trajectories at a low RF
field of 3 kHz in (e)–(g), and a high RF field of 30 kHz in
(i)–(k) are given for three crystallites of different orientations.
Also shown are the sideband pattern of the powder in (d)
and the time profiles of the magnetization during the pulse at
3 kHz (h), and 30 kHz (l). For the plots generated using a
field of 3 kHz the low-power approximation is valid and, for
all three cases, the magnetization follows the path expected if
only the centerband contributes to the irradiation, as seen in
(e)–(g). Note that for the profiles in generated by the crystal-
lite, there is an oscillatory motion superimposed on the overall
variation of the magnetization from +z to −z, which is due to
interference from the neighboring sidebands. However, for a
given carousel, these oscillations are cancelled by averaging
over γ ;23 the resulting plots are also shown in Fig. 4.

Increasing the RF power of the WURST to 30 kHz
gives the magnetization time profiles shown in Figs. 4(i)–4(k),
with the corresponding profiles calculated from considering
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FIG. 5. Simulations of the z-magnetization present after the WURST-20
pulse as a function of RF field for the three crystallites shown in Fig. 4 [where
β is, respectively, (a) 10◦, (b) 30◦, and (c) 45◦]. The curves showing the pro-
file calculated for the crystallites are in blue, whereas in red the profiles cal-
culated using the effective Hamiltonian expansion of Eq. (A1), truncated at
the second order sidebands, are in red. In panel (a), the blue and red lines sit
directly on top of each other.

only the centerband. First, it can be seen that the amplitude
of the oscillations superimposed upon the smooth variation
is much greater, reflecting the greater degree of interference
from the neighboring sidebands. However, it is still removed
by averaging over γ . Secondly, it is evident that the increased
inference has the effect of modifying the degree of inver-
sion: in the case of (j), the inversion is retarded compared to
the calculation resulting from the low-power approximation,
whereas in (k) it is enhanced to give complete inversion. The
numerical values of the superadiabaticity factors (s Q) can be
calculated assuming the low-power approximation, and are
given for the six combinations of crystallite orientation and
RF power. For the three examples at an RF field of 3 kHz,
the superadiabaticity factors provide an accurate indication
of the expected degree of inversion, reflecting the validity of
the low-power adiabatic approximation in these cases. As for
the examples at an RF field of 30 kHz shown in Figs. 4(j)
and 4(k), the calculated values of s Q clearly indicate that the
low-power approximation fails to account for the observed de-
gree of inversion.

The higher-order effects can be more readily seen from
the RF profiles of the pulse acting on the three crystallites of
the 100 kHz axially-symmetric SA tensor, which are shown
in Figs. 5(a)–5(c).

The origin of the interference effects can be more easily
explained by reference to the RF profiles for the three crys-
tallites which give Mz following the pulse as a function of
RF field; these are shown for the three crystallites in Fig. 5.
The crystallite for which β = 10◦ is shown in (a). It can be
seen that once the adiabatic condition has been reached, at
2.5 kHz, complete inversion is still observed up to RF pow-

ers of 40 kHz. By comparison, the profile of the crystallite
with β = 30◦ in (b) exhibits a peak at 32.5 kHz at which
no net inversion occurs, which accounts for the retarded in-
version observed in Fig. 4(j). However, for the third crystal-
lite with β = 45◦, the profile of which is seen in Fig. 5(c),
the adiabatic condition is apparently reached at a lower RF
field than expected, resulting in the enhanced inversion seen in
Fig. 4(k).

These interference effects can be explained by calculat-
ing the higher order effective Hamiltonians given in Eq. (28).
Figure 5 also shows the RF profiles that were simulated us-
ing the effective Hamiltonian for comparison. For both the
second- and third-order effective Hamiltonians, we retained
the terms that include the four sidebands that are closest to
the centerband, that is m = −2 to m = +2. The centerband
corresponds to m = 0, the two first-order sidebands corre-
spond to m = ±1, and m = ±2 represent the second-order
sidebands.

For the crystallites discussed here, the third-order RF
field is of opposite sign to the first-order RF field. As ωmax

1 in-
creases, the former field increases in size relative to the latter
until the net field is zero, resulting in the maximum observed
in the RF profiles. At higher fields, the third-order term domi-
nates the lower order term, and ensures that the adiabatic con-
dition is reached. In the case of Fig. 5(a), the centerband is
large, and so dominates the resultant RF field up to 40 kHz.
In Fig. 5(c), however, the centerband is very small, and so the
third-order field cancels the first-order field at a low value of
ωmax

1 . This term then dominates the inversion process, giving
enhanced inversion at higher fields. The situation in Fig. 5(b)
is intermediate in that the centerband field, being of interme-
diate size, is not canceled until ωmax

1 reaches 30 kHz.
As a final point, it should be borne in mind that although

the effective Hamiltonian calculated here provides an expla-
nation of the observed behavior, the effective Hamiltonian
series can only be approximated by the first three terms if
ωmax

1 < ωr. It is frequently the case, however, that the RF
powers of interest are either equal to or greater than the rate
of MAS, and so the quantitative results must be treated with
caution.

V. FULL ADIABATIC INVERSION
IN A POWDER SAMPLE

A summary of the reasoning behind the choice of the best
experimental conditions is illustrated by Fig. 6 which shows
the extent of inversion of a powder average of the crystallites
for the same SA tensor as used for the previous simulations.

The average was performed by summing the inversion
results using 109 (α,β) crystallite orientations in one oc-
tant using the Lebedev scheme.32 The maximum degree of
inversion is observed for spinning rates above 35 kHz, and
RF fields below 45 kHz. It can also be seen that for spin-
ning frequencies below half the sweep width of the adia-
batic pulse, here 15 kHz, the extent of inversion is poor.
The explanation for this observation is that, at such spinning
frequencies, the pulse sweeps through more than one side-
band, resulting in the complete breakdown of the low-power
approximation.
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FIG. 6. Contour plot showing the extent of inversion of the sideband pattern of a powder due to the WURST-20 pulse as a function of spinning rate and RF
field, calculated with SPINEVOLUTION (Ref. 25). An axially-symmetric SA tensor of 100 kHz was employed in the simulation. The pulse sweeps through
30 kHz in 5 ms. Selected contours are labeled with the values of Mz/M0 that they represent. The sideband pattern is completely inverted at rates of MAS above
35 kHz, and RF field below 45 kHz.

The results of the simulations and experiments presented
here allow us to formulate some general recommendations for
obtaining the optimum degree of inversion using an S3AP.
First, it is beneficial to use the highest rate of MAS that is
practicable. The reasons for this are that: (i) a greater spin-
ning rate results in a smaller proportion of the crystallites
with low-intensity centerbands, enabling us to reach the adi-
abatic condition with a lower RF field, and (ii) the greater
spacing of the sidebands means that larger RF powers and
sweep widths can be employed before we begin to violate the
low-power approximation. Secondly, the adiabatic pulse must
be designed so that the sweep width is less than twice the
spinning frequency, ensuring that only one sideband is swept
through, the necessity for which was noted in Sec. V. The
remaining parameter to be set is the RF power, which can
be optimized with a standard inversion-recovery experiment.
100% inversion can be obtained easily over a large range of
parameters.

VI. EXPERIMENTS

A. Experimental results

The use of S3AP pulses is illustrated here by two
molecules which feature largely anisotropic NMR spectra, as
shown in Fig. 7: a diamagnetic selenium compound, 1, con-
taining four 77Se spins with a chemical shift anisotropy (CSA)
of 53 kHz; and a paramagnetic Tb(III) complex, 2, where the
protons possess large anisotropic shifts of around 1 MHz.33

In both cases, hard pulses can only provide incomplete
[Fig. 7(b)] or extremely poor inversion [Fig. 7(f)] of the reso-
nance pattern.

For compound 1, using the recommendations described
in the previous section, we selected a WURST–20 adiabatic
pulse, and simulated the extent of inversion for a range of
B1 fields [Fig. 7(d)], showing that we can obtain complete
inversion for fields in between 5 and 15 kHz. This was
confirmed experimentally, and Fig. 7(c) shows a quantita-
tive inversion obtained after selective irradiation of the cen-
terband with a WURST–20 with a maximum B1 field of
10 kHz.

Compound 2 presents a more exacting test, due to its ex-
tremely short relaxation times and the large inhomogeneous
broadening of the lines. A pulse of short duration (i.e., less
than 1 ms) is therefore needed, and hyperbolic secant16 ws
found to perform better in this regime. We note that more so-
phisticated irradiation schemes, such as the one described in
Ref. 8, may be adapted more successfully to shorter pulses
under fast MAS. Figure 7(h) shows a simulation of the ex-
tent of inversion for a pulse of 495 µs. Despite that no quan-
titative inversion can be achieved, irradiation in the range
30–60 kHz assures the best results. Indeed, Fig. 7(g) confirms
that a 60 kHz hyperbolic secant pulse provided the highest
degree of inversion.

B. Experimental details
77Se spectra of compound 1 were recorded on a 500

MHz Avance III Bruker spectrometer, equipped with a 4 mm
double-resonance MAS probe spinning at 11 kHz MAS. The
pulse sequence comprised cross-polarization34 from 1H to
77Se followed by a z-filter during which the inversion pulse
was applied. 2048 transients were recorded for each spectrum
with a longitudinal relaxation delay of 5 s.
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FIG. 7. 77Se and 1H NMR spectra of compounds 1 and 2, under 11 and 60 kHz MAS, respectively. Conventional spectra are shown in (a) and (e). The spectra
obtained by inversion with a 69 kHz and 200 kHz hard pulse, respectively are shown in (b) and (f). Spectra obtained by inversion of the centerband using an
S3AP are shown in (c) and (g). Simulation of the degree of inversion vs RF power are shown in (d) and (h). The centerbands are indicated with an ∗. Full
experimental details are given in Sec. VI B.

Dipolar interactions between the 77Se and protons were
suppressed by using SPINAL-64 decoupling.35 The reference
spectrum is shown in Fig. 7(a), while in Fig. 7(b) is shown
the spectrum obtained after a hard pulse inversion with a B1

field of 69 kHz. The spectrum in Fig. 7(c) was obtained after
inversion with a WURST–20 pulse which swept through
10 kHz in 5 ms, and had a maximum B1 field of 10 kHz.
The superadiabatic quality factor of this pulse is calculated to
be 866.

1H spectra of compound 2 were recorded on a 500 MHz
Avance III Bruker spectrometer, equipped with a 1.3 mm
double-resonance MAS probe spinning at 60 kHz MAS.

The reference spectrum is shown in Fig. 7(e). Figure 7(f)
shows the spectrum obtained after inversion with a hard pulse
of 200 kHz. Figure 7(g) shows the result of selective irra-
diation of the centerband with a hyperbolic secant of sweep
width 70 kHz, duration 495 µs, and a B1 field of 60 kHz.16

The superadiabatic quality factor of this pulse is calculated
to be 5.56 × 106. In all three spectra, a double spin echo
following a 90◦ pulse was used to correct for the distorted
baseline; the 180◦ pulses used in the echoes were tan/tanh

SHAPs with a B1 field of 200 kHz, and which swept through
10 MHz in 60 µs (resulting superadiabatic quality factor of
1477). 4096 transients were recorded with a longitudinal re-
laxation delay of 100 ms.

VII. CONCLUSIONS

The present work has introduced a framework for repre-
senting the Hamiltonian of the spin system in an NMR exper-
iment under MAS.

We have shown that a simple picture of the irradiation
process can be obtained by transforming the RF Hamilto-
nian in the interaction frame of the anisotropic interaction
giving rise to the spinning sideband manifold (the “jolting
frame”). This representation indicates how the parameters of
low-power adiabatic sweeps can be chosen to achieve optimal
performance for rotating solids.

We have illustrated with some experimental results how
this framework opens new avenues in solid-state NMR for
manipulating spin systems with broad SSB manifolds, such
as paramagnetic substrates or quadrupolar nuclei.
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The principle difficulty encountered with inverting the
populations of the nuclear spin states in these materials is that
the practical RF powers that are available do not come close
to providing the necessary bandwidth. This difficulty tradi-
tionally has inhibited the application of many well-established
NMR techniques to such samples. We have shown that effi-
cient inversion of an entire sideband family of several hundred
kHz can be achieved using low-power, sideband-selective adi-
abatic pulses. Therefore, the use of S3APs presented here is
expected to hold open the door for the development of new
NMR techniques for the studies of diamagnetic and paramag-
netic species, such as new efficient heteronuclear decoupling
schemes, the accurate measurement of site-specific dipolar
shift anisotropies in paramagnetic compounds, the enhance-
ment of the central transitions in quadrupolar nuclei via the
selective inversion of the satellite transition populations, and
the broadband inversion of the whole SSB manifold of a
quadrupolar nucleus.
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APPENDIX: DERIVATION OF THE EFFECTIVE
FLOQUET HAMILTONIAN

This appendix contains more details on how the effec-
tive Hamiltonians are calculated. The time-dependent Hamil-
tonian has the form:

ˆ̃H (t) =
+∞∑

p=−∞
Ĥp exp(ipωrt), (A1)

where

Ĥp = 1
2ω1(An+p exp(+iφn+p) Î+ + An−p exp(−iφn−p) Î−),

(A2)

and p = m − n.
The first-order effective Hamiltonian can simply be writ-

ten down as follows:

Ĥ (1) = Ĥ0 (A3)

= 1
2ω1[An exp(+iφn) Î+ + An exp(−iφn) Î−] (A4)

= 1
2ω1 An[(exp(+iφn) + exp(−iφn)) Îx

+ i (exp(+iφn) − exp(−iφn)) Îy] (A5)

= ω1 An[cos(φn) Îx − sin(φn) Îy] (A6)

= ω1 An R̂z(−φn) Îx R̂z(−φn)−1. (A7)

The expression for the second-order term is

Ĥ (2) = −1
2

∑

p %=0

[Ĥ−p, Ĥp]
pωr

. (A8)

The commutator can be evaluated as follows:

[Ĥ−p, Ĥp] = 1
4ω2

1[An−p exp(+iφn−p) Î+, An−p

× exp(−iφn−p) Î−] + 1
4ω2

1[An+p

× exp(−iφn+p) Î−, An+p exp(+iφn+p) Î+] (A9)

= 1
4ω2

1

(
A2

n−p − A2
n+p

)
[ Î+, Î−] (A10)

= 1
2ω2

1

(
A2

n−p − A2
n+p

)
Îz . (A11)

The complete expression for the second-order term is
therefore

ˆ̃H (2) = ω2
1

4ωr

∑

p %=0

A2
n+p − A2

n−p

p
Îz . (A12)

The expression for the third-order effective Hamiltonian
is:

Ĥ (3) = −1
2

∑

p %=0

[[Ĥ0, Ĥp], Ĥ−p]
p2ω2

r

− 1
3

∑

p %=0

∑

p′ %=p %=0

[[Ĥp−p′ , Ĥp′ ], Ĥ−p]
pp′ω2

r
. (A13)

The evaluation of the pth term in the first sum gives:

− [[Ĥ0, Ĥp], Ĥ−p]
2p2ω2

r

= Anω
3
1

8p2ωr
[An−p An+p exp(i(φn − φn−p − φn+p))

− A2
n+p exp(−iφn)] Î− + Anω

3
1

8p2ωr
[An−p An+p

× exp(−i(φn − φn−p − φn+p)) − A2
n−p exp(iφn)] Î+.

(A14)

If we substitute φk = kγ , the above expression simplifies to:

− [[Ĥ0, Ĥp], Ĥ−p]
2p2ω2

r

= Anω
3
1

8p2ωr
[An−p An+p exp(−iφn) − A2

n+p exp(−iφn)] Î−

+ Anω
3
1

8p2ωr
[An−p An+p exp(iφn) − A2

n−p exp(iφn)] Î+.

(A15)
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This can then be rewritten in a more convenient form by
adding the term p to the term −p and halving the result. This
gives an expression in terms of Îx and Îy as follows:

− ω3
1

8ω2
r

A0(An−p − An+p)2

p2
R̂z(−φn) Îx R̂z(−φn)−1. (A16)

The second sum for the third-order effective Hamiltonian can
be evaluated in the same way, with the exception that in the
final step, we combine the term labeled p, p′ with the term
−p,−p′. The final result is

− ω3
1

12ω2
r

(An−p − An+p)(An−p′ An+p−p′ − An+p′ An−p+p′ )
pp′

× R̂z(−φn) Îx R̂z(−φn)−1. (A17)

The third-order effective Hamiltonian is therefore:

ˆ̃H
(3)

= − ω3
1

8ω2
r

∑

p %=0

A0(An−p − An+p)2

p2
R̂z(−φn) Îx R̂z(−φn)−1

− ω3
1

12ω2
r

∑

p %=0

∑

p′ %=p %=0

× (An−p − An+p)(An−p′ An+p−p′ − An+p′ An−p+p′ )
pp′

× R̂z(−φn) Îx R̂z(−φn)−1. (A18)
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