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Correlating geminal 2JSi–O–Si couplings to
structure in framework silicates†

D. J. Srivastava,a P. Florian,b J. H. Baltisbergerc and P. J. Grandinetti *a

The dependence of a 29Si geminal J coupling across the inter-tetrahedral linkage on local structure was

examined using first-principles DFT calculations. The two main influences on 2JSi–O–Si were found to be

a primary dependence on the linkage Si–O–Si angle and a secondary dependence on mean Si–O–Si

linkage of the two coupled 29Si nuclei. An analytical expression describing these dependences was

proposed and used to develop an approach for relating the correlated pair of 2JSi–O–Si coupling and

mean 29Si isotropic chemical shift to the linkage Si–O–Si angle and the mean Si–O–Si angle of the two

coupled 29Si nuclei. An example of this analysis is given using 29Si NMR results from the siliceous zeolite

Sigma-2.

1 Introduction

The isotropic chemical shift of 29Si NMR has long been a
valuable probe of structure in silicate materials.1–4 In changing
coordination from SiO4 to SiO5 to SiO6 the chemical shift range
of 29Si in silicates varies from approximately �100 to �150 to
�200 ppm, respectively.5 In the case of tetrahedral coordina-
tion, the chemical shift varies over a range of �120 to �70 ppm
as the second coordinate sphere changes from fully connected
Q4 to fully disconnected Q0, respectively.6 For Q4 sites it is
well established that variations in the range of �105 ppm to
�120 ppm in the isotropic chemical shift of 29Si are correlated
to the mean of the Q4’s four inter-tetrahedral angles.7–9

The anisotropy of the 29Si chemical shift is also strongly
correlated to changes in the first-coordination sphere. As first
noted by Grimmer and coworkers,10,11 as the Si–O bond length
decreases there is an increase in the s-character of the bonding
orbital at Si and corresponding increase in shielding along the
direction of the shorter bond. This strong dependence of the
29Si chemical shift anisotropy has been exploited not only for
distinguishing and quantifying Qn sites,12–16 but recently has been
found to be an effective probe of the modifier cation coordination
to the non-bridging oxygen of Q3 sites17 and useful in the NMR
refinement of crystal structures.18

In contrast to the 29Si chemical shift, accurate measure-
ments of geminal 2JSi–O–Si couplings across the inter-tetrahedral

linkage in silicates have yielded no clear relationships between
coupling constant and local structure. While 2JSi–O–Si couplings
in solution have been measured,19–23 motional averaging makes
it difficult to use these measurements to establish empirical
relationships. The number of 2JSi–O–Si measurements in solids
have been limited, particularly at 29Si natural abundance levels,
4.67%, and thus far few efforts24–26 have been made in trying to
establish quantitative relationships between 2JSi–O–Si and struc-
ture. Compounding this issue is that commercial computational
chemistry packages have only recently reached the level where
accurate J-couplings can be calculated through using expensive
density function theory (DFT) methods.27 Nevertheless, geo-
metric dependences have been reproduced using modest DFT
calculations. The most recent attempts in determining such
relationships, using ab initio DFT methods, were in 2009 by
Cadars et al.26 and Florian et al.25 Although both groups
acknowledged a dependence of 2JSi–O–Si coupling on Si–O–Si
bond angle, Florian et al. suggested a one-to-one mapping,
whereas Cadars et al. found that the dependence of the 2JSi–O–Si

coupling is not limited to the Si–O–Si bond angle but is also
influenced significantly by the local geometry around the Si–O–Si
linkage. Cadars et al. concluded that such dependencies led to
a relatively ‘‘large scatter’’ of 2JSi–O–Si coupling, with respect
to Si–O–Si bond angle, and did not attempt to deduce any
empirical relationship between the 2JSi–O–Si coupling and the
local structure. To get a sense of that scatter, we plot the 2JSi–O–Si

couplings—calculated here—as a function of Si–O–Si bond
angle in Fig. S5 of the ESI.†

Here we re-examine the variation in 2JSi–O–Si using Q4–Q4

clusters that are centered on the Si–O–Si linkage extending out
to four coordination spheres away from the bridging oxygen
between the two coupled silicon. With greater computational
resources than were available to Cadars et al. 8 years ago,
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we were able to increase the level of theory and obtain excellent
agreement with known experimental 2JSi–O–Si couplings. Through
systematic structural variations of the cluster, we investigated
the influence of (1) the Si–O–Si linkage angle, (2) the Si–O bond
distance, (3) the inter-tetrahedral dihedral angle, and (4) the
outer Si–O–Si linkage angles of the two coupled 29Si nuclei. Most
significantly we show here that after the central Si–O–Si linkage
angle it is the outer Si–O–Si linkage angles of the Q4–Q4 couple
that play the next most significant role in determining 2JSi–O–Si.
A smaller dependence on the dihedral angle is observed while a
negligible dependence on Si–O distance over relevant length
scales is observed. In this study we assume the SiO4 tetrahedron
does not deviate from local tetrahedral symmetry and take the
intra-tetrahedral O–Si–O angle as constant. While this is a
reasonable approximation in a fully connected Q4 network, it
is likely that this assumption will break down as the silicate
network becomes depolymerized. Further work will be required
to understand the dependence of J coupling on local structure in
networks having significant distortions around SiO4 tetrahedra.

As the isotropic chemical shift has a well known dependence on
the mean Si–O–Si angle, we also show here that a correlation plot of
mean 29Si isotropic chemical shift versus 2JSi–O–Si coupling can be
mapped into a two dimensional structural correlation of linkage
Si–O–Si angle to mean Si–O–Si angle of the two coupled 29Si nuclei.

2 Method

All ab initio calculations were carried out using Gaussian 0928 at
the Ohio supercomputing center,29 running HP SL390 G7 two-
socket servers with Intel Xeon x5650 (Westmere-EP, 6 core,
2.67 GHz) processors and 48 GB memory. The natural atomic
orbital and natural bond orbital analysis was performed using
Gaussian NBO version 3.1.30 The 2JSi–O–Si couplings were calcu-
lated using DFT with B3LYP functional on a small O centered
SiH3 terminated cluster, (H3SiO)3–Si–O–Si–(OSiH3)3, shown in
Fig. 1. A perfect tetrahedron angle +O–Si–O = 109.51 was imposed
about Si atoms in all calculations.

A locally dense basis set was implemented on this cluster,
as suggested by Cadars et al.,26 for accurate 2JSi–O–Si coupling
calculations. This follows an implementation of cc-PV5Z basis
set on the two central Si (labeled Si(i) and Si( j) in Fig. 1), 6-31++G
basis set on all H, and 6-31++G* basis set on all O and
remaining Si. Single point NMR calculations were run with tight
self consistent field (SCF) convergence criteria. The integration
grid size was increased to a pruned (99, 590), ‘ultrafine’ grid,
although no differences in 2JSi–O–Si couplings were observed from
the pruned (75, 302) ‘fine’ integration grid. All further calcula-
tions were, therefore, subjected to a ‘fine’ integration grid. With
this setup each calculation took approximately four and a half
hours split over 12 cpu cores.

Systematic structural variations of the cluster were performed
to investigate the 2JSi–O–Si coupling dependence on and correla-
tions between the central Si–O–Si bond angle, O0, and (a) Si–O
bond distances, dSi–O, (b) O–Si–Si–O inter-tetrahedral dihedral
bond angle, f (index O1–Si(i)–Si( j)–O4 in Fig. 1) and (c) outer

Si–O–Si bond angles (O1 to O6). With the geometry constrained out
to the third coordination sphere of the central linkage oxygen, a
geometry optimization of the outermost Si–H bond distances and
the remaining dihedral angles was performed once using restricted
Hartree–Fock, RHF/6-311G(d) basis set. We found, as did Cadars
et al.,26 that variations in these fourth coordination sphere geome-
tries had negligible effect on the predicted J-coupling. We con-
firmed this finding with several 2JSi–O–Si coupling calculation
starting with RHF/6-311G(d) optimized initial geometries and the
results are tabulated in Table S3 of the ESI.† A complete list of
all geometrical constraints imposed in this study is tabulated in
Tables S1–S5 of the ESI.†

Si–O bond distance, dSi–O

The 2JSi–O–Si coupling dependence on and correlation between
O0 and dSi–O was explored by performing a series of 2JSi–O–Si

coupling calculations on the optimized structure by varying O0

from 1201 to 1801 on a uniform grid for three Si–O bond distances,
dSi–O = 1.58 Å, 1.60 Å and 1.62 Å, respectively, Fig. 2C.

O–Si–Si–O dihedral angle, /

A similar series of calculations were performed on the optimized
geometry to investigate the 2JSi–O–Si coupling dependence on and
correlation between O0 and f. This was accomplished by inde-
pendently varying f and O0 from �601 to +601 and 1201 to 1801,
respectively, Fig. 2B. All Si–O bond distances were set to 1.6 Å.

Outer Si–O–Si bond angle, Xka0

A complete systematic exploration of the 2JSi–O–Si dependence on the
six outer Si–O–Si bond angles would have exceeded our computa-
tional capabilities. In light of the well established8 linear depen-
dence of the isotropic 29Si chemical shift on the mean Si–O–Si bond
angle for a Q4 tetrahedra we attempted to reduce the dimensionality
of the problem by using the mean Si–O–Si bond angle for each Q4

tetrahedra, (Si(i) and Si( j)) involved in the 2JSi–O–Si coupling, that is,

hOii ¼
1

4

X
k¼0;1;2;3

Ok; and hOij ¼
1

4

X
k¼0;4;5;6

Ok; (1)

Fig. 1 (H3SiO)3–Si–O–Si–(OSiH3)3 symmetric cluster used in calculating
the 2JSi–O–Si coupling across Si(i)–O–Si( j ).
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to calculate a double mean

hOi ¼
hOii þ hOij

2
¼ 1

8
2O0 þ

X6
k¼1

Ok

 !
: (2)

Through systematic variation of O0 (the central linkage angle)

and hOi we show (vide infra) that a combined measurement
of isotropic 29Si chemical shift and 2JSi–O–Si can be exploited to
determine the local structure around the Q4–Q4 linkage.

Despite this effort to reduce the dimensionality of this
problem from seven to two, there still exist infinite combina-

tions of Oka0 that lead to the same hOi in eqn (2), with the
exception of the singular—and highly unlikely—occurrence of

hOi ¼ 180
�
. To ensure a systematic variation of the local struc-

ture, we choose to constrain all Oka0 = Oout. A series of 2JSi–O–Si

calculations were performed by independently vary Oout and O0

from 1201 to 1801 on a uniform grid. The calculated 2JSi–O–Si as a

function of hOi and O0 is presented in Fig. 2A. All Si–O bond
distances were set to 1.6 Å. Of course, the constraint Oka0 = Oout,
implemented only to ensure a systematic local structural
variation, is unrealistic even for most crystalline silicates and
highly siliceous zeolites, as well as in silica glass and other
silica rich disordered materials. To break free from this con-
straint numerous 2JSi–O–Si coupling calculations were performed
at arbitrary outer Si–O–Si bond angles Oka0 and f, with values
listed in Tables S3 and S4 of the ESI.† These calculations are
used to further verify agreement with our proposed 2JSi–O–Si

coupling model.
All additional numerical analysis codes were written in python

using NumPy libraries.31 The least square analysis was performed
using python’s LMFIT32 module. The graphics were produced using
python’s matplotlib library.33

3 Theory

The J coupling contribution to the nuclear spin Hamiltonian
can be written34

ĤJ = m̂N�K�m̂N0 = �h2gNgN0 ÎN�K�ÎN0. (3)

The convention is to combine the gyromagnetic ratio constants
and the reduced K tensor such that

ĤJ = �h2pÎN�J�ÎN0, (4)

with

J ¼ �hgNgN0
2p

K: (5)

This gives a J tensor with dimensions of inverse time.
As we explored the calculated variations in 2JSi–O–Si with

changing cluster structure, we searched for the possible empirical
relationships that might characterize the observed correlation of
2JSi–O–Si to structure. In our calculations we found that the majority
of the J-coupling arises from the Fermi contact (FC) contribution,
and the remaining contributions from spin–dipolar (SD), para-
magnetic spin–orbit (PSO), and diamagnetic spin–orbit (DSO), as
illustrated in Fig. S2 of the ESI,† account for less than 10% of the
net J-coupling. With this in mind, we looked for guidance in the
older literature of J coupling theory and focused on the simple
and highly approximate MO theory approach outlined by Pople
and Santry,35–40 which considers only the isotropic Fermi contact
contribution and yields the expression

KðfcÞ ¼ 4

9
m20m

2
Bs

2
Nð0Þs2N0 ð0ÞpN;N0 ; (6)

where m0 is the magnetic constant, mB is the Bohr magneton,
sN(0) and sN0(0) are the values of the valence s-orbitals of atoms N
and N0 at the nuclei, and pN,N0 is the mutual atom–atom polariz-
ability of Coulson and Longuet-Higgins,41 given by

pN;N0 ¼ �4
Xocc
i

Xunocc
j

cm;icn;icm; jcn; j

ej � ei
: (7)

Here the summation is over occupied (i) and unoccupied ( j)
molecular orbitals, |cii, with energy ei and given by

cij i ¼
X
m

cm;i fm

�� E
; (8)

which are expressed in terms of the valence hybrid type orbitals
(HTOs), |fmi, which are given by

|fmi = am|si + (1 � a2
m)1/2|pi, (9)

Fig. 2 Dependence and correlation of 2JSi–O–Si couplings between Si(i)–O–Si( j ) bond angle, O0 and (A) hOi, (B) O–Si–Si–O inter tetrahedral dihedral
angle, f and (C) Si–O bond distance, dSi–O. For calculations in (A) dSi–O = 1.60 Å and Oka0 = Oout varied from 1201 to 1801. In (B) dSi–O = 1.60 Å, Oout = 1461
and f varied from �601 to +601. In (C) Oout = 1461 and d varied from 1.58 Å to 1.62 Å.
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where |si and |pi are the atomic-type orbitals and a2
m is the

s-character of the HTO. In the summation of eqn (7) the m and
n index the HTOs on N and N0, respectively.

An exhaustive search of the literature reveals few MO theory
studies considering the geminal 2JAB coupling between tetra-
hedrally coordinated atoms. The most relevant and detailed
discussion we could find on this topic is a chapter in 1988 by
Klessinger and Barfield,42 examining the dependence of geminal
13C–13C coupling constants. In this case they derive the mutual
atom–atom polarizability as

pC1;C3
¼ a21a

2
3

16b3
�4b22;20 � b10 ;3 � b2;20

� �2þ X
k

b20 ;k þ
X
l

b2;l

 !2
2
4

3
5

(10)

where a2
1 and a2

3 are the s-character of the HTOs at carbon C1

and C3 along C–C bond directed towards C2, in a C1–C2–C3

linkage. The integral bm,n is the matrix element of the Hamilto-
nian operator in the HTO basis set |fmi,

bm,n = hfm|H|fni. (11)

The definition of these integrals are given in Klessinger and
Barfield.42 If all integrals in eqn (10) except b22;20 are ignored,
the mutual atom–atom polarizability term can be approxi-
mated42 to

pC1,C3
p a2

1a2
3a4

2, (12)

where a2
2 is the s-character of the valence HTO at C2. The 2JC1,C3

can then be approximated to

2JC1,C3
p a2

1a2
3a4

2. (13)

While eqn (13) predicts a simple linear correlation of 2JC1,C3
to

the s-character product, we expect this highly approximated
correlation to deviate from linearity due to the neglect of
the vicinal integrals.42 Nevertheless, this approximate model
provides a useful starting point for developing an empirical
expression for geminal J coupling across two coupled 29Si. On
the basis of eqn (13), we propose that 2JSi–O–Si is approximately
given by

2JSi�O�Si / a2Sii a
2
Sij
a4O ¼ a2Sii a

2
O

� �
a2Sij a

2
O

� �
; (14)

where a2Sii a
2
O

� �
and a2Sij a

2
O

� �
are the products of the s-character

of the valence HTOs associated with the Si(i)–O and Si( j)–O
bonds across Si(i)–O–Si( j) linkage, respectively, as illustrated in
Fig. 3.

4 Results and discussion
4.1 Dependence on local structure

In this subsection, we discuss and examine the contributions to
the net 2JSi–O–Si coupling arising from the variations in the local
structure on the basis of the underlying s-characters a2

O, a2Sii , and

a2Sij at the bridging oxygen and adjacent silicons respectively.

These values were determined from the quantum chemistry DFT
cluster calculation using Gaussian NBO version 3.1. For clarity,
we only present a subset of results from Fig. 2 per structural
parameters considered.

Shown in Fig. 4A is the expected dependence of 2JSi–O–Si

coupling on O0 A [1201,1801], for a subset of results from Fig. 2A
where the outer Si–O–Si angles are held constant at Oka0 = 1801
and the distances held constant at dSi–O = 1.6 Å. This dependence
of 2JSi–O–Si coupling on the Si–O–Si linkage angle, O0, has been
previously discussed by both Cadars et al.26 and Florian et al.25 In
Fig. 4B we see the more intriguing result that the 2JSi–O–Si coupling
has a markedly linear correlation to the product a2Sii a

2
Sij
a4O, as

predicted by eqn (14). As noted earlier, the slight deviation from
linearity observed is not unexpected and is likely attributed to the
neglected terms in the mutual atom–atom polarizability term. In
Fig. 4C and D we see that the variation in 2JSi–O–Si primarily arises
from variation in a4

O,—the s-character product of the two valence
HTOs at the bridging oxygen—while there is a minor yet non-
negligible variation coming from a2Sii a

2
Sij

—the s-character product

of the two silicon valence HTOs in the Si–O–Si linkage. The
change in a4

O is the result of the change in the hybridization
of the valence orbitals at the bridging oxygen from sp2 (33.33%
s-character) at O0 = 1201 to sp (50% s-character) at O0 = 1801.

Fig. 3 Simple illustration of valence HTOs associated with the Si(i)–O and
Si( j )–O bonds across Si(i)–O–Si( j ) linkage.

Fig. 4 Dependence of 2JSi–O–Si coupling on (A) Si–O–Si bond angle O0,
(B) a2Sii a

2
Sij
a4O, (C) a4

O, and (D) a2Sii a
2
Sij

for the constraints Oka0 = 1801 and
d = 1.6 Å.
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A popular approximation for the s-character at the bridging
oxygen9,42 is given by

a2O � fOðOÞ ¼
cosO

cosO� 1
: (15)

Here we use the symbol fO(O) to distinguish the approximated
s-character at the bridging oxygen from the symbol a2

O for the
s-character calculated using quantum chemistry DFT calculations.

With the s-character of each sp3 valence HTO on a tetra-
hedral silicon expected to be 25%, the calculated value of a2Sii a

2
Sij

is also as expected at B(25%)2 = 6.25%. The slight increase in
a2Sii a

2
Sij

from 6.1% to 6.7% in Fig. 4D with decreasing O0 may

seem surprising from a simple hybrid orbital picture—as all
intra-tetrahedral angles and Si–O distances are held constant
at +O�Si�O = 109.51 and dSi–O = 1.6 Å, respectively, in these
calculations. In fact, for this subset of results, even the outer
Si–O–Si angles are held fixed at 1801, so it is only the variation
of the linkage angle O0 that is responsible for this slight change
in a2Sii a

2
Sij

. We will examine the origin of this variation shortly

when the influence of the outer Si–O–Si angles on 2JSi–O–Si are
considered.

In Fig. 5A is the variation of 2JSi–O–Si with the two central
linkage Si–O bond distances, dSi–O A [1.58 Å, 1.62 Å], for a
subset of results from Fig. 2C where the central linkage angle
was fixed at O0 = 1801 and the outer Si–O–Si angles and outer
distances are held constant at Oka0 = 1461 and dSi–O = 1.6 Å,
respectively. The 2JSi–O–Si coupling remains relatively constant
around 21.5 Hz over this range of central linkage Si–O bond
distances, with a slight decrease from B22 to B21 Hz with
increasing bond length. This relative independence of 2JSi–O–Si

on the central linkage Si–O bond distances is consistent with

previous observations by Florian et al.25 In Fig. 5B we find again
that the 2JSi–O–Si coupling has a linear correlation to the product
a2Sii a

2
Sij
a4O, and in Fig. 5C we see no observable dependence of

2JSi–O–Si coupling on the s-character product a4
O at the bridging

oxygen. This is because, for this subset of calculations, the
hybridization at the bridging oxygen was locked to sp through
the constraint O0 = 1801. Since the s-character at the bridging
oxygen predominantly depends on the Si–O–Si bond angle,
as noted in eqn (15), the change in Si–O bond distance, dSi–O,
shows no observable change in its s-character. In Fig. 5D we
find that the minor variation in 2JSi–O–Si coupling is dominated by
the change in a2Sii a

2
Sij

. While a decrease in the a2
Si with increasing

Si–O bond distance has been previously reported by Grimmer
and coworkers10,11 it was in the context of correlated changes in
the intra-tetrahedral angle +O–Si–O. With the intra-tetrahedral
angles in this calculation fixed at +O–Si–O = 109.51, it seems
that changes in Si–O length alone lead to minor variations in
a2

Si—although these result in relatively insignificant variations
in 2JSi–O–Si.

In Fig. 6A is the variation of 2JSi–O–Si with the inter-
tetrahedral dihedral angle f A [�601,601] for a subset of results
from Fig. 2B where the central linkage angle was fixed at
O0 = 1801, and the outer Si–O–Si angles and outer distances
are held constant at Oka0 = 1461 and dSi–O = 1.6 Å, respectively.
A periodic modulation of the form cos 3f for 2JSi–O–Si over a
range of 1.6 Hz is observed due to the local three fold symmetry of
the (H3SiO)3–Si–O–Si–(OSiH3)3 cluster when rotating about f.
There is no observable variation in the hybrid orbital s-character
products in Fig. 6B–D as expected, since this variation is associated
with the vicinal integral terms of the mutual atom–atom polariz-
ability expansion which are completely neglected in eqn (14).

Fig. 5 Dependence of 2JSi–O–Si coupling on (A) Si–O bond distance,
dSi–O, (B) a2Sii

a2Sij a
4
O, (C) a4

O, and (D) a2Sii
a2Sij for the constraints O0 = 1801

and Oka0 = 1461.

Fig. 6 Dependence of 2JSi–O–Si coupling on (A) O–Si–Si–O inter tetrahedral
dihedral angle, f, (B) a2Sii a

2
Sij
a4O, (C) a4

O, and (D) a2Sii a
2
Sij

for the constraints
Oka0 = 1461, O0 = 1801 and d = 1.6 Å.
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In Fig. 7A is the variation of 2JSi–O–Si with hOi, as calculated
by eqn (2), for a subset of results from Fig. 2A subjected to the
constraint O0 = 1801, Oka0 = Oout and d = 1.6 Å where Oout varied
from 1201 to 1801. The variation in Fig. 7A is about 25% of that
shown in Fig. 4A and is found to be the second most dominant
dependence of 2JSi–O–Si coupling. As O0 is fixed, it is the change in
the outer Si–O–Si bond angles, Oout, that leads to this variation in
2JSi–O–Si. In Fig. 7B we again find the markedly linear correlation
of 2JSi–O–Si coupling with a2Sii a

2
Sij
a4O as predicted by eqn (14). As

might be expected, no observable dependence of 2JSi–O–Si coupling
on a4

O is observed in Fig. 7C since the hybridization at the
bridging oxygen was fixed to sp with the constraint O0 = 1801.

Clearly, the origin of the 2JSi–O–Si dependence on the outer
angles, Oout comes from the variation in a2Sii a

2
Sij

as seen in

Fig. 7D. Why would the a2Sii or a2Sij increase as the outer angles,

Oout, increase? This is the same question alluded to earlier with
respect to Fig. 4D. The logic is as follows. We expect the sum of
the s-characters for the four HTO around each silicon to be
constant. So, as the s-character of one HTO deviates from 25%,
the s-characters of the other HTO compensate to maintain the
constant sum. Hence, we expect the s-character of the HTO that is
part of the central linkage to increase as the average s-character of
the other three HTOs decreases. Close examination of the varia-
tion in a2Sii as the function of the Si–O–Si tetrahedral angle, O0,

and average Si–O–Si bond angle, hOii, also shown in Fig. S3 of the
ESI,† reveals an approximate proportionality given by

a2Sii / cosO0 � cos Oh ii: (16)

In regard to Fig. 4D, since the outer Si–O–Si bond angles are
held constant, Oka0 = 1801, the individual s-characters at

Si(i) and Si( j) and, therefore, the product, a2Sii a
2
Sij

, decreases as

O0 increases.
The highly approximate J-coupling model in eqn (14) pre-

dicts a linear correlation of 2JSi–O–Si coupling with respect to the
s-character product, a2Sii a

2
Sij
a4O. From the ab initio calculations,

shown in Fig. 8, however, we find that the 2JSi–O–Si coupling is
better described by a quadratic in the s-character product,
a2Sii a

2
Sij
a4O, with R2 = 0.99164. As mentioned earlier, this slight

curvature is not unexpected, since the model in eqn (14)
neglects all the vicinal integrals from the mutual atom–atom
polarizability term. Further discussion on the effect of vicinal
integrals can be found in the chapter by Klessinger and
Barfield.42

Fig. 8 shows the 2JSi–O–Si couplings in two different colors,
gray and black. The gray dots correspond to couplings evalu-
ated by systematic variation of the local structure, also shown in
Fig. 2, and are provided in the Tables S1 and S2 of the ESI.† The
black dots correspond to couplings evaluated at arbitrary Ok

and f and are listed in Tables S3 and S4 of the ESI.† Most
notably a consistent trend in 2JSi–O–Si is observed with respect to the
s-character product, a2Sii a

2
Sij
a4O, for both systematic and arbitrary

structural variation.
On the basis of the results and discussion presented here

we can now construct an expression relating 2JSi–O–Si to local
structure. The most straightforward approach would be a sub-
stitution of eqn (15) and (16) into eqn (14). We found, however,
that such an approach leads to an excessive number of coeffi-
cients for calibrating the relationship. Instead we found that
the same relationship can be expressed with fewer coefficients
using

J O0; hOi;f
� �

� �hOi cosO0 m1 f
2
O O0ð Þ �m2 cos 3f

� �
þ J0:

(17)

Fig. 7 Dependence of 2JSi–O–Si coupling on (A) the average Si–O–Si bond
angles, hOi, (B) a2Sii

a2Sij a
4
O, (C) a4

O, and (D) a2Sii
a2Sij for the constraints

O0 = 1801 and d = 1.6 Å.

Fig. 8 2JSi–O–Si coupling as a function of a2Sii a
2
Sij
a4O at Si( i), Si( j ) and O across

Si(i)–O–Si( j ) linkage. The points in gray and black corresponds to the
systematic (Oka0 = Oout) and arbitrary structural variations, respectively.
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For this expression the coefficients m1 = 0.778 � 0.004 Hz per 1,
m2 = 0.0058 � 0.0005 Hz per 1 and J0 = �8.3 � 0.1 Hz were
determined by least square minimization of the objective
function

arg min
J0

Jðab initioÞ � JðO; hOi;fÞ
��� ������ ���2

2
: (18)

Note there is a strong cross correlation coefficient rm1, J0
=�0.918

between m1 and J0 in this determination. A comparison of
ab initio 2JSi–O–Si couplings with respect to the 2JSi–O–Si coupling
model in eqn (17) is presented in Fig. 9A. Again, the points in
gray and black correspond to systematic and arbitrary variation
of the local structure, respectively. Excellent agreement
between the 2JSi–O–Si coupling model and 2JSi–O–Si coupling from
ab initio calculation is observed with R2 = 0.99518. Note that in
this approach the slight dependence on Si–O bond distance,
dSi–O, has been neglected.

Given that m2 { m1 we find that the 2JSi–O–Si coupling model
of eqn (17) can be simplified by dropping the m2 cos 3f term
to obtain

J O0; hOi
� �

� �m1hOi cosO0
cosO0

cosO0 � 1

� �2

þJ0: (19)

A comparison of ab initio 2JSi–O–Si couplings with respect to the
2JSi–O–Si coupling model in eqn (19) is presented in Fig. 9B.
Neglecting the f dependence leads to slightly greater scatter
which is more noticeable at the higher couplings and a small
drop of linear correlation coefficient to R2 = 0.99016. Given this
agreement all further analysis will use the 2JSi–O–Si coupling
model of eqn (19).

4.2 Mapping to local structure

Even with our approximate model for 2JSi–O–Si in eqn (19) being

only a function of O0 and hOi there is no unique mapping of a
single 2JSi–O–Si coupling back to local structure. Fortunately, the
29Si isotropic chemical shift of a Q4 site has a well established
correlation7,9,43 to the mean inter-tetrahedral angle, hOi, of a
given Q4, of which, the linear correlation8

dCS = adhOi + bd, (20)

is the simplest, while still giving a reasonably accurate correla-
tion in the relevant range of hOi A [1401,1601] as detailed
further in the ESI.† The data for a number of crystalline silicas
and siliceous framework silicates taken from the literature9,44,45

is shown in Fig. 10, along with a fit to eqn (20) with coefficients
ad and bd provided in Table 1.

The 2JSi–O–Si coupling across 29Si(i)–O–29Si( j) linkage involves
two 29Si isotropic chemical shifts, dCS,i and dCS, j, associated
with 29Si(i) and 29Si( j) respectively. Using the linear correlation

Fig. 9 (A) Plot comparing prediction of 2JSi–O–Si coupling model, eqn (17),
and 2JSi–O–Si coupling from ab initio calculations. Gray and black dots
correspond to 2JSi–O–Si couplings evaluated by systematic and arbitrary
structural variations, respectively. The calculated Pearson correlation
coefficient is R2 = 0.99518. (B) Plot comparing prediction of 2JSi–O–Si

coupling model, eqn (19) and 2JSi–O–Si coupling from ab initio calculations.
The calculated Pearson correlation coefficient is R2 = 0.99016.

Fig. 10 Linear correlation between average Si–O–Si bond angle, hOi, about
the Si tetrahedron and 29Si isotropic chemical shift, dCS. Twelve 29Si isotropic
chemical shift sites in Tridymite were taken from Kitchin et al.45 and average
Si–O–Si bond angles from Baur.44 The remaining were obtained from
Engelhardt and Radeglia9 and references within.
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of eqn (20), the average 29Si isotropic chemical shift is
given by

dCS ¼
1

2
dCS;i þ dCS; j
� �

¼ adhOi þ bd: (21)

With a simple inversion we have

hOi ¼ dCS � bd
� �	

ad: (22)

Inverting eqn (19) for O0 gives

O0 ¼ aj þ bj
J � J0

m1hOi

 !
þ cj exp dj

J � J0

m1hOi

 !( )
; (23)

where the coefficient aj, bj, cj and dj are listed in Table 1. Details
on the solution for O0 are given in Appendix A. To calibrate
eqn (23) against previous experimental measurements we use
the 29Si INADEQUATE NMR results of Cadars et al.26 on poly-
crystalline highly siliceous zeolite Sigma-2, whose structure,
shown in Fig. 11A, was predetermined using single crystal
X-ray analysis. There are four observable 2JSi–O–Si couplings in
Sigma-2. The observed 2JSi–O–Si coupling and the mean 29Si

isotropic chemical shift, dCS, of the two coupled nuclei corres-
ponding to the four 29Si–O–29Si pairs from this measurement
are listed in Table 2. Here, the mean 29Si isotropic chemical

shift, dCS, was determined as half the corresponding 29Si
double quantum frequency of the INADEQUATE spectra. The

X-ray determined Si–O–Si bond angle, O0 and hOi, for these
pairs are also listed in Table 2. We choose to calibrate eqn (23)

by only varying J0 to obtain agreement between model and
experiment. This was accomplished by performing a least
square minimization of the objective function

arg min
J0

O0ðX-rayÞ � O0j jj j22; (24)

where O0(X-ray) is the Si–O–Si bond angle inferred from
single crystal X-ray analysis, and O0 is the Si–O–Si bond angle
calculated using eqn (23) with m1 = 0.778 Hz per 1 held
constant. With this approach we obtain best agreement with
J0 = �7.5 � 0.6 Hz.

A plot of measured 2JSi–O–Si coupling vs. dCS from Sigma-2
is presented in Fig. 11B. Overlaid on top is a grid map of

calibrated hOi and O0. In Fig. 11C, the calculated hOi and

O0 (filled circles) along with X-ray determined hOi and O0

(open circles) are presented. Overlaid on top is the grid map

of J coupling and dCS. Agreement to within B31 between O0

from the X-ray and NMR measurements is observed for pairs 4-1,
2-3 and 1-3, while there is a mismatch of B71 for the 4-2 pair.
With only the limited data from Sigma-2, it is clear that addi-
tional experimental efforts in refinement of the calibration of
eqn (23) would be helpful. Such efforts are, in fact, currently in
progress in our laboratory on highly silicious zeolites using
the recently developed PIETA method46 for rapid and sensitive
2D J NMR spectroscopy.

Overall, the results presented here are extremely pro-
mising and open the door to new opportunities to more fully
exploit 2JSi–O–Si couplings as quantitative probes of structure in
silicates. With only a B1 Hz change from the ab initio derived
value of J0 = �8.3 � 0.1 Hz, to the Sigma-2 calibrated value
of J0 = �7.5 � 0.6 Hz, the proposed correlated models of
29Si chemical shift and 2JSi–O–Si coupling provide an acceptable
model for the quantitative interpretation of the 2JSi–O–Si coupling.
It will be interesting to see if a similar analysis can be applied
with other geminal J couplings across a bridging oxygen, such as
a 31P–O–31P or 27Al–O–29Si linkage.

Table 1 Final coefficients for eqn (22) after calibration with the results of
Fig. 10 and eqn (23) after calibration with Sigma-2

Coefficient Value Coefficient Value

ad �0.6148 ppm per 1 bd �19.297 ppm
aj 107.881 bj 223.491
cj 0.000024871 dj 53.01
m1 0.778 Hz per 1 J0 �7.5 Hz

Fig. 11 (A) Schematic of highly siliceous zeolite Sigma-2 adapted from Cadars et al.26 (B) A correlation plot of dCS and J coupling for Sigma-2 with

superimposed calibrated hOi and O0 grid. (C) Comparison of single crystal X-ray vs. NMR determined hOi and O0 for the four different 29Si pairs in Sigma-2.

Superimposed is the dCS and J coupling grid. A good agreement between the two results is observed for pair 4-1, 2-3 and 1-3.
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5 Summary

While both scalar J-couplings and homonuclear dipolar coupling
are used qualitatively to establish connectivities between Si sites,
it has been primarily homonuclear 29Si–29Si dipolar couplings
through measurements of double quantum buildup curves that
have provided some of the most useful quantitative details in the
structure refinement of many siliceous zeolites and NMR crystallo-
graphic structural studies of meso- and microporous silicate
materials.18,47,48 Here we have examined whether 2JSi�O�Si, the
geminal coupling across a Si–O–Si linkage, can be turned into a
more quantitative probe of the local structure in silicate networks.

Using high level density function theory (DFT) methods, we have
found that the two main influences on the 2JSi–O–Si couplings are a
primary dependence on the linkage Si–O–Si angle and a secondary
dependence on mean Si–O–Si linkage of the two coupled 29Si nuclei.
We show that the simple and highly approximate MO theory
approach outlined by Pople and Santry35–40 can provide key insights
when developing approximate models for geminal J-couplings
based on results from high level density function theory (DFT)
methods.25,26 Exploiting a well established correlation between 29Si
isotropic chemical shift and the mean Si–O–Si angle of a Q4 site, we
have developed an approach where a correlation plot of 2JSi–O–Si to
mean 29Si isotropic chemical shift can be mapped into a 2D
correlation of linkage Si–O–Si bond angle, O0, to mean Si–O–Si
bond angle of the two coupled 29Si. Using available experimental
2JSi–O–Si couplings from Sigma-2,26 we found that only a minor
adjustment of one ab initio derived coefficient in our 2JSi–O–Si model
was needed to bring our model in line with experimental results.
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Appendix
A Inversion of 2JSi–O–Si to X0

For inversion of eqn (19) with respect to O0, a close form
solution can be obtained by first recasting eqn (19) into the
form of a cubic equation

l3 þ xl2 � x

2
lþ x ¼ 0; (25)

where l = cosO0, and

x ¼ J � J0

m1hOi
: (26)

The roots of eqn (25) are

l1ðxÞ ¼ �
1

3
xþ SðxÞ þ TðxÞ½ �; (27a)

l2ðxÞ ¼ �
1

3
x� 1

2
SðxÞ þ TðxÞ½ � þ i

1

2

ffiffiffi
3
p

SðxÞ � TðxÞ½ �; (27b)

l3ðxÞ ¼ �
1

3
x� 1

2
SðxÞ þ TðxÞ½ � � i

1

2

ffiffiffi
3
p

SðxÞ � TðxÞ½ �; (27c)

where we have defined

TðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðxÞ �

ffiffiffiffiffiffiffiffiffiffiffi
DðxÞ

p
3

q
; (28a)

SðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðxÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
DðxÞ

p
3

q
; (28b)

RðxÞ ¼ � 1

54
x 2x2 þ 18xþ 27
� �

; (28c)

DðxÞ ¼ 1

108
x2 4xþ 27ð Þ: (28d)

The number of real and complex roots can be determined from
the sign of the discriminant, D(x) in eqn (28d):
� If D(x) 4 0, one root is real and two are complex conjugate.
� If D(x) = 0, all roots are real with at least two equal.
� If D(x) o 0, all roots are real and unequal.
For the given problem, the discriminant D(x), eqn (28d), is

positive if x 4 �6.75. For given J0 o 0 Hz and m1 4 01 Hz�1,
x is always positive and so is the discriminant. Therefore, there
exists only one real root of eqn (25) given by eqn (27a). Thus, the
inversion of eqn (19) with respect to O0 is

O0ðxÞ ¼
180

�

p
cos�1 l1ðxÞ½ �: (29)

To further simplify this result, O0(x) was approximated to a
function g(x) that closely resembles O0(x) within the relevant
range of 1201 to 1801. For O0(x) A [1201,1801], l1(x) maps to a range
l1(x) A [�0.5, �1.0] which further maps to a range x A [1/18,1/4].
Within the relevant range x A [1/18,1/4], O0(x) can be approxi-
mated as

g(x) = aj + bj x + cj exp{dj x}, (30)

where the coefficients are listed in Table 1. The function g(x)
provides a good approximation of O0(x) with |g(x) � O0(x)| o 0.51
within the range O0(x) A [1201, 1761]. Deviations from 1761 and
onwards to a maximum of 3.71 atO0(x) = 1801 is significant although
can be neglected because of its low probability. A comparison of
O0(x) and g(x) as a function of x is provided in the ESI.†
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Table 2 Observed 2JSi–O–Si couplings (column 3) and 29Si average isotropic
chemical shift, dCS, (column 2) for the 29Si pairs (column 1) in highly siliceous

zeolite Sigma-2.26 Listed along column 4 and 5, is O0 and hOi obtained from
the crystal structure determined by single crystal X-ray analysis. Listed in

column 6 and 7, is the O0 and hOi calculated using eqn (22) and (23)

29Si pair

Experimental Calculated

NMR Via X-ray Via NMR

dCS/ppm J/Hz O0/1 hOi/1 O0/1 hOi/1

1-3 �118.0 23.5 172.8 158.2 176.0 160.5
2-3 �116.8 16.5 153.5 155.6 152.0 158.6
4-2 �111.25 10.0 148.7 148.9 141.5 149.5
4-1 �112.4 6.3 137.2 151.6 134.0 151.4
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S1. GAUSSIAN INTEGRATION GRID SIZE

The effect of change in 2JSi-O-Si coupling evaluation with
the size of the integration grid was tested to avoid inte-
gration errors. A series of calculations were run with (1)
‘fine’, pruned (75, 302) and (2) ‘ultrafine’, pruned (99, 590)
integration grids. As seen in Fig. S1, no difference in the
2JSi-O-Si coupling was observed with the increase in the in-
tegration grid size. Thus, all remaining calculations were
run with ‘fine’ integration grid.

S2. CONTRIBUTIONS TO THE NET J COUPLING

The net J-coupling includes contributions from Fermi
contact (FC), Spin-dipolar (SD), paramagnetic spin-orbit
(PSO) and diamagnetic spin-orbit (DSO).

J = JFC + JSD + JPSO + JDSO

For 2JSi-O-Si couplings—calculated using Gaussian 091 with
high level of theory—across a Si-O-Si linkage, the net J-
coupling is dominated by the Fermi contact term. As shown
in Fig. S2, the combined contribution from SD, PSO, DSO

FIG. S1. A perfect correlation of 2JSi-O-Si coupling evaluated
from ‘fine’ and ‘ultrafine’ integration grid.

FIG. S2. Combined contribution from SD, PSO and DSO terms
accounts to less that 10% of the net J-coupling. The horizontal
axis—labeled as index—refer to the index number in Table S1-
S3.

terms account to less than 10% of the contribution from net
J-coupling. The combined contribution increases slightly
around indexes 1 to 10, indexes 52-67 and indexes 108,
114, 120 and 126, and is associated with clusters with lower
Si-O-Si bond angles, Ω0 in the range of 120◦ to 130◦.

S3. S-CHARACTER MODEL

A. s-character at the Si HTO along Si-O bond

In cluster calculations with all the Si-O bond distances
fixed at dSi-O = 1.6 Å and with all intra-tetrahedral-angles
fixed at ∠O-Si-O = 109.5◦, we found that the a2Si of a given
Si-O bond depends not only on the Si-O-Si bond angle of
its linkage, but also on the other three Si-O-Si bond angles
around the silicon. As explained in the main text this arises
because the sum of a2Si from all four Si-O bonds about the
Si tetrahedron must remain constant. A strong correlation
between a2Si of a given Si-O bond and the four surrounding
Si-O-Si bond angles was found to be

a2Si ≈ cSi +mSi (cos Ω0 − cos〈Ω〉) , (1)

where mSi = 0.0279, cSi = 0.2465 with R2 = 0.96894.
The ab-initio-derived data supporting this correlation are



S2

FIG. S3. Variation in the s-character at Si HTO along the Si-O
bond as the function of the Si-O-Si tetrahedral angle Ω0 and
average Si-O-Si bond angle, 〈Ω〉.

shown in Fig. S3. From Eq. (1), it follows that when all four
Si-O-Si bond angles about the Si tetrahedron are equal, the
s-character along all four Si-O bonds are also equal.

FIG. S4. Comparison of the s-character at bridging oxygen
HTO along the Si-O bond against the popular2,3 approxima-
tion fs(Ω0).

B. s-character at the bridging O HTO along Si-O bond

The popular2,3 approximation of the s-character at the
bridging oxygen along the Si-O bond follows,

fs(Ω0) =
cos Ω0

cos Ω0 − 1
. (2)

Although the approximation in Eq. (2) gives a good agree-
ment with respect to ab-initio calculated s-character, a2O, at
higher Ω0, we shown in Fig. S4 that this agreement appears
to break at lower Ω0.

S4. 29SI ISOTROPIC CHEMICAL SHIFT

In 1983, Smith and Blackwell4 first showed a correlation
between the 29Si isotropic chemical shift, δCS , and the av-
erage secant of the four Si-O-Si bond angles, Ω, about a Si
tetrahedron given by

δCS = a′δ 〈sec Ω〉+ b′δ. (3)

Later, the same year, Thomas et. al.5 showed that 29Si
isotropic chemical shift correlate linearly with 〈Ω〉, accord-
ing to

δCS = aδ 〈Ω〉+ bδ. (4)

The two models, stating different apparent correlations,
both showed a good agreement with experiment. In 1984,
Engelhardt and Radeglia3, with the assumption that the
chemical shift is dominated by paramagnetic contribution,
described 29Si isotropic chemical shift using a simple quan-
tum mechanical model to follow

δCS = Aδ

4∑
n=1

fO(Ωn) +Bδ. (5)

The authors showed that the reason Eqs. (3)-(5) all show
a good agreement with experiment is that the weak curva-
ture of both fO(Ω) and sec Ω in the relevant range of about
140◦-160◦ cause the 29Si isotropic chemical shift to remain
mostly linear with respect to the average Si-O-Si bond an-
gle, 〈Ω〉. Many other models6 have since been proposed,
however, by far the simplest correlation is given by Thomas
et. al.5, which can be derived by performing a Taylor series
expansion of Eq. (5) about 150◦ with coefficients

aδ = 1.0025× 10−2Aδ and bδ = 0.3527 Aδ +Bδ.

The coefficient Aδ = −61.7625 ppm/◦ and Bδ = 2.19 ppm
from Engelhardt and Radeglia3 yields aδ = −0.6191 ppm/◦

and bδ = −19.593 ppm which is within 1.5% of the linear
fit reported in the main document.

S5. J-COUPLING AS A FUNCTION OF Ω0

Cadars et. al.7 discussed the scattering of 2JSi-O-Si cou-
pling as a function of the central linkage angle Ω0 result-
ing from the local structural variations about the central
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FIG. S5. Scattering of 2J-coupling as a function of central
Si-O-Si linkage angle Ω0 arising from the variation is local struc-
ture around the central Si-O-Si linkage, specially the double
average 〈Ω〉. The gray dots are the ab-initio calculated 2J-
couplings and the background image is the intensity plot of 2J-
coupling assuming a uniform distribution of 〈Ω〉.

Si-O-Si linkage. In Fig. S5 we show the extent of this scat-
tering as a function of Ω0. The gray dots are the ab-initio
calculated J-couplings—presented in Table S1-S4—and the
image in the background is calculated using Eq. (19) from
the main document—assuming a uniform distribution of
〈Ω〉. A significant scatter of J-coupling is observed when
only considering the center linkage angle Ω0—specially at
higher Ω0.

S6. J-COUPLING MODEL APPROXIMATION

In the main text, we described an analytical expression
for calculating the Si-O-Si bond angle

Ω0(x) =
180◦

π
cos−1

[
−1

3
x+ {S(x) + T (x)}

]
, (6)

where

S(x) =
3

√
R(x) +

√
D(x),

T (x) =
3

√
R(x)−

√
D(x),

D(x) =
1

108
x2 (4x+ 27) ,

R(x) = − 1

54
x
(
2x2 + 18x+ 27

)
and

x =
J − J0
m1〈Ω〉

.

Due to the overly complicated parameterization of Eq. (6),
we approximated Eq. (6) by

g(x) = aj + bj x+ cj exp {dj x} (8)

FIG. S6. (A) Comparison of Ω0(x) and g(x) as a function of
x ∈ [1/18, 1/4]. A good agreement between g(x) and Ω0(x) is
observed within the range corresponding to Ω0 ∈ [120◦, 176◦]
shown in (B).

where the coefficients aj = 107.88◦, bj = 223.49◦,
cj = 0.00002487◦ and dj = 53.01 were determined from the
least square minimization. In Fig. S6, we show the compari-
son between Ω0(x) and g(x). A good agreement is observed
for the range of x corresponding to Ω0(x) ∈ [120◦, 176◦] to
within ±0.5◦. The deviation at 176◦ and onwards is signifi-
cant to a maximum of 3.7◦ at Ω0(x) = 180◦. However, due
to the low probability of Si-O-Si bond angles in this range
[176◦, 180◦], this deviation has been neglected in our study.
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TABLE S1. ab-initio calculated vs 2JSi-O-Si coupling model J(Ω0, 〈Ω〉, φ) and J(Ω0, 〈Ω〉), Eq. (17) and (19) respectively of the main

document, as a function of local parameters including Ω, 〈Ω〉 and φ. The initial geometry was optimized with RHF/6-311G(d).
Individual geometry, after structural constraint on Ω0,Ωk and φ, was not optimized. All Si-O bond distances were fixed to 1.6 Å
and O-Si-O intra-tetrahedral angle set to 109.5◦.

Index Ω0/1
◦ Ωk/1

◦ 〈Ω〉/1◦ φ/1◦ 2JSi-O-Si-coupling /Hz

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 ab-initio J(Ω0, 〈Ω〉, φ) J(Ω0, 〈Ω〉)
1 120 146 146 146 146 146 146 139.5 -59.837 -1.8738 -1.7949 -2.1819
2 120 146 146 146 146 146 146 139.5 -45.539 -1.4292 -1.9006 -2.1819
3 120 146 146 146 146 146 146 139.5 -20.286 -1.8025 -2.3703 -2.1819
4 120 146 146 146 146 146 146 139.5 8.237 -1.9657 -2.5334 -2.1819
5 120 146 146 146 146 146 146 139.5 36.126 -1.9524 -2.0598 -2.1819
6 130 146 146 146 146 146 146 142 -42.783 3.0394 2.9474 2.6332
7 130 146 146 146 146 146 146 142 -18.639 2.4312 2.3494 2.6332
8 130 146 146 146 146 146 146 142 7.502 2.2193 2.1653 2.6332
9 130 146 146 146 146 146 146 142 33.269 2.4992 2.7195 2.6332

10 130 146 146 146 146 146 146 142 56.619 2.9022 3.1317 2.6332
11 140 146 146 146 146 146 146 144.5 -51.305 8.7829 8.4861 7.9345
12 140 146 146 146 146 146 146 144.5 -40.432 8.2917 8.2535 7.9345
13 140 146 146 146 146 146 146 144.5 -17.334 7.4491 7.5564 7.9345
14 140 146 146 146 146 146 146 144.5 6.935 7.2072 7.3604 7.9345
15 140 146 146 146 146 146 146 144.5 30.992 7.6871 7.9664 7.9345
16 140 146 146 146 146 146 146 144.5 53.6 8.4367 8.5145 7.9345
17 150 146 146 146 146 146 146 147 -58.431 14.029 13.739 13.035
18 150 146 146 146 146 146 146 147 -48.184 13.966 13.611 13.035
19 150 146 146 146 146 146 146 147 -38.449 13.526 13.338 13.035
20 150 146 146 146 146 146 146 147 -27.49 12.984 12.943 13.035
21 150 146 146 146 146 146 146 147 -16.296 12.57 12.571 13.035
22 150 146 146 146 146 146 146 147 -4.938 12.342 12.352 13.035
23 150 146 146 146 146 146 146 147 6.494 12.329 12.369 13.035
24 150 146 146 146 146 146 146 147 17.896 12.527 12.617 13.035
25 150 146 146 146 146 146 146 147 29.171 12.915 13.004 13.035
26 150 146 146 146 146 146 146 147 40.238 13.41 13.396 13.035
27 150 146 146 146 146 146 146 147 51.045 13.836 13.665 13.035
28 160 146 146 146 146 146 146 149.5 -50.489 18.597 18.014 17.329
29 160 146 146 146 146 146 146 149.5 -36.792 18.051 17.6 17.329
30 160 146 146 146 146 146 146 149.5 -15.472 17.092 16.792 17.329
31 160 146 146 146 146 146 146 149.5 6.149 16.879 16.59 17.329
32 160 146 146 146 146 146 146 149.5 27.718 17.534 17.236 17.329
33 160 146 146 146 146 146 146 149.5 48.901 18.467 17.981 17.329
34 170 146 146 146 146 146 146 152 -52.533 21.793 21.099 20.331
35 170 146 146 146 146 146 146 152 -35.426 21.155 20.564 20.331
36 170 146 146 146 146 146 146 152 -14.824 20.27 19.739 20.331
37 170 146 146 146 146 146 146 152 5.882 20.123 19.54 20.331
38 170 146 146 146 146 146 146 152 26.569 20.837 20.183 20.331
39 170 146 146 146 146 146 146 152 47.124 21.707 20.98 20.331
40 180 146 146 146 146 146 146 154.5 -34.332 22.417 21.896 21.703
41 180 146 146 146 146 146 146 154.5 -14.327 21.623 21.076 21.703
42 180 146 146 146 146 146 146 154.5 5.679 21.555 20.883 21.703
43 180 146 146 146 146 146 146 154.5 25.685 22.34 21.511 21.703
44 180 146 146 146 146 146 146 154.5 45.691 23.158 22.331 21.703
45 180 146 146 146 146 146 146 154.5 65.694 23.177 22.522 21.703
46 180 180 180 180 180 180 180 180 15.68 25.269 25.954 26.635
47 180 180 180 180 180 180 180 180 25.68 25.607 26.411 26.635
48 180 180 180 180 180 180 180 180 45.69 26.321 27.366 26.635
49 180 180 180 180 180 180 180 180 65.694 26.604 27.589 26.635
50 180 180 180 180 180 180 180 180 -14.327 25.174 25.904 26.635
51 180 180 180 180 180 180 180 180 -34.332 26.061 26.859 26.635
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TABLE S2. ab-initio calculated vs 2JSi-O-Si coupling model. The initial geometry was optimized with RHF/6-311G(d). Individual
geometry, after structural constraint on Ω0,Ωk and φ, was not optimized. All Si-O bond distances were fixed to 1.6 Å and O-Si-O
intra-tetrahedral angle set to 109.5◦.

Index Ω0/1
◦ Ωk/1

◦ 〈Ω〉/1◦ φ/1◦ 2JSi-O-Si-coupling /Hz

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 ab-initio J(Ω0, 〈Ω〉, φ) J(Ω0, 〈Ω〉)
52 120 120 120 120 120 120 120 120 8.237 -2.4502 -3.3223 -3.0199
53 120 130 130 130 130 130 130 127.5 8.237 -2.3752 -3.0189 -2.6976
54 120 140 140 140 140 140 140 135 8.237 -2.1224 -2.7155 -2.3753
55 120 146 146 146 146 146 146 139.5 8.237 -1.9657 -2.5334 -2.1819
56 120 150 150 150 150 150 150 142.5 8.237 -1.8819 -2.412 -2.0529
57 120 160 160 160 160 160 160 150 8.237 -1.6123 -2.1086 -1.7306
58 120 170 170 170 170 170 170 157.5 8.237 -1.2821 -1.8052 -1.4083
59 120 180 180 180 180 180 180 165 8.237 -1.083 -1.5017 -1.0859
60 130 120 120 120 120 120 120 122.5 7.5 1.4423 0.74504 1.1487
61 130 130 130 130 130 130 130 130 7.5 1.6351 1.2913 1.7196
62 130 140 140 140 140 140 140 137.5 7.5 1.9939 1.8376 2.2906
63 130 146 146 146 146 146 146 142 7.5 2.2193 2.1653 2.6332
64 130 150 150 150 150 150 150 145 7.5 2.3653 2.3838 2.8616
65 130 160 160 160 160 160 160 152.5 7.5 2.762 2.9301 3.4326
66 130 170 170 170 170 170 170 160 7.5 3.2326 3.4764 4.0035
67 130 180 180 180 180 180 180 167.5 7.5 3.6555 4.0226 4.5745
68 140 120 120 120 120 120 120 125 6.935 5.8964 5.2636 5.7602
69 140 130 130 130 130 130 130 132.5 6.935 6.2592 6.07 6.5965
70 140 140 140 140 140 140 140 140 6.935 6.8246 6.8765 7.4327
71 140 146 146 146 146 146 146 144.5 6.935 7.2072 7.3604 7.9345
72 140 150 150 150 150 150 150 147.5 6.935 7.4552 7.6829 8.269
73 140 160 160 160 160 160 160 155 6.935 8.0411 8.4894 9.1052
74 140 170 170 170 170 170 170 162.5 6.935 8.722 9.2958 9.9415
75 140 180 180 180 180 180 180 170 6.935 9.3362 10.102 10.778
76 150 120 120 120 120 120 120 127.5 6.494 10.354 9.6437 10.221
77 150 130 130 130 130 130 130 135 6.494 10.962 10.692 11.304
78 150 140 140 140 140 140 140 142.5 6.494 11.771 11.74 12.386
79 150 146 146 146 146 146 146 147 6.494 12.329 12.369 13.035
80 150 150 150 150 150 150 150 150 6.494 12.696 12.789 13.468
81 150 160 160 160 160 160 160 157.5 6.494 13.527 13.837 14.55
82 150 170 170 170 170 170 170 165 6.494 14.448 14.885 15.633
83 150 180 180 180 180 180 180 172.5 6.494 15.182 15.933 16.715
84 160 120 120 120 120 120 120 130 6.149 14.194 13.359 14.002
85 160 130 130 130 130 130 130 137.5 6.149 15.085 14.602 15.282
86 160 140 140 140 140 140 140 145 6.149 16.154 15.844 16.561
87 160 146 146 146 146 146 146 149.5 6.149 16.879 16.59 17.329
88 160 150 150 150 150 150 150 152.5 6.149 17.361 17.087 17.841
89 160 160 160 160 160 160 160 160 6.149 18.462 18.329 19.121
90 160 170 170 170 170 170 170 167.5 6.149 19.567 19.572 20.4
91 160 180 180 180 180 180 180 175 6.149 20.308 20.814 21.68
92 170 120 120 120 120 120 120 132.5 5.882 16.907 15.984 16.674
93 170 130 130 130 130 130 130 140 5.882 18.015 17.352 18.081
94 170 140 140 140 140 140 140 147.5 5.882 19.278 18.719 19.487
95 170 146 146 146 146 146 146 152 5.882 20.123 19.54 20.331
96 170 150 150 150 150 150 150 155 5.882 20.688 20.087 20.894
97 170 160 160 160 160 160 160 162.5 5.882 21.978 21.455 22.301
98 170 170 170 170 170 170 170 170 5.882 23.156 22.822 23.707
99 170 180 180 180 180 180 180 177.5 5.882 23.795 24.19 25.114

100 180 120 120 120 120 120 120 135 5.679 18.298 17.216 17.932
101 180 130 130 130 130 130 130 142.5 5.679 19.451 18.626 19.382
102 180 140 140 140 140 140 140 150 5.679 20.697 20.037 20.833
103 180 146 146 146 146 146 146 154.5 5.679 21.555 20.883 21.703
104 180 150 150 150 150 150 150 157.5 5.679 22.13 21.448 22.283
105 180 160 160 160 160 160 160 165 5.679 23.44 22.858 23.734
106 180 170 170 170 170 170 170 172.5 5.679 24.552 24.269 25.184
107 180 180 180 180 180 180 180 180 5.679 25.017 25.68 26.635



S7

TABLE S3. ab-initio calculated vs 2JSi-O-Si coupling model. Individual geometry, after structural constraint on Ω0 and Ωk, was
optimized using RHF/6-311G(d). The ab-initio J-coupling were then evaluated on the optimized geometry and compare with
Eq. (19) of the main document. Excellent agreement in J-coupling model and ab-initio result is observed. All Si-O bond distances
were fixed to 1.6 Å and O-Si-O intra-tetrahedral angle set to 109.5◦.

Index Ω0/1
◦ Ωk/1

◦ 〈Ω〉/1◦ φ/1◦ 2JSi-O-Si-coupling /Hz

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 optimized ab-initio J(Ω0, 〈Ω〉, φ) J(Ω0, 〈Ω〉)
108 130 142 142 142 142 142 142 139 48.553 2.374 2.8141 2.4048
109 140 142 142 142 142 142 142 141.5 -3.63 7.1588 7.0094 7.6
110 150 142 142 142 142 142 142 144 -1.01 12.333 11.911 12.602
111 160 142 142 142 142 142 142 146.5 -48.131 18.823 17.438 16.817
112 170 142 142 142 142 142 142 149 -43.526 21.655 20.298 19.769
113 180 142 142 142 142 142 142 151.5 -163.34 22.695 21.663 21.123
114 130 146 146 146 146 146 146 142 -51.352 2.2449 3.0886 2.6332
115 140 146 146 146 146 146 146 144.5 69.457 8.2131 8.4749 7.9345
116 150 146 146 146 146 146 146 147 6.494 12.329 12.369 13.035
117 160 146 146 146 146 146 146 149.5 -43.389 18.997 17.832 17.329
118 170 146 146 146 146 146 146 152 -44.749 22.294 20.911 20.331
119 180 146 146 146 146 146 146 154.5 -158.46 23.025 22.07 21.703
120 130 149 149 149 149 149 149 144.25 -53.188 2.323 3.2866 2.8045
121 140 149 149 149 149 149 149 146.75 68.928 8.0614 8.7422 8.1853
122 150 149 149 149 149 149 149 149.25 -44.896 14.262 13.864 13.36
123 160 149 149 149 149 149 149 151.75 -40.024 19.09 18.109 17.713
124 170 149 149 149 149 149 149 154.25 -36.953 22.181 21.053 20.753
125 180 149 149 149 149 149 149 156.75 -63.423 24.16 22.994 22.138
126 120 178 178 178 178 178 178 163.5 -73.729 -0.84366 -0.80904 -1.1504
127 130 178 178 178 178 178 178 166 -69.237 4.3472 4.9844 4.4603
128 140 178 178 178 178 178 178 168.5 -69.038 10.709 11.248 10.61
129 150 178 178 178 178 178 178 171 -55.352 16.639 17.296 16.498
130 160 178 178 178 178 178 178 173.5 -40.144 21.178 21.882 21.424
131 170 178 178 178 178 178 178 176 -26.716 24.167 24.668 24.833
132 180 178 178 178 178 178 178 178.5 -142.29 25.249 25.956 26.345

TABLE S4. ab-initio calculated vs 2JSi-O-Si coupling model. The initial geometry was optimized with RHF/6-311G(d). Individual
geometry, after structural constraint on Ω0,Ωk and φ, was not optimized. All Si-O bond distances were fixed to 1.6 Å and O-Si-O
intra-tetrahedral angle set to 109.5◦.

Index Ω0/1
◦ Ωk/1

◦ 〈Ω〉/1◦ φ/1◦ 2JSi-O-Si-coupling /Hz

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 ab-initio J(Ω0, 〈Ω〉, φ) J(Ω0, 〈Ω〉)
133 140 140 140 140 130 130 130 136.25 6.935 6.5463 6.4733 7.0146
134 140 140 140 140 150 150 150 143.75 6.935 7.1414 7.2797 7.8508
135 140 140 140 140 160 160 160 147.5 6.935 7.4539 7.6829 8.269
136 140 140 140 140 170 170 170 151.25 6.935 7.7772 8.0862 8.6871
137 140 150 150 150 130 130 130 140 6.935 6.867 6.8765 7.4327
138 140 150 150 150 140 140 140 143.75 6.935 7.1414 7.2797 7.8508
139 140 150 150 150 160 160 160 151.25 6.935 7.7665 8.0862 8.6871
140 140 150 150 150 170 170 170 155 6.935 8.0846 8.4894 9.1052
141 150 130 146 146 146 146 146 145 6.494 11.882 12.09 12.747
142 150 140 146 146 146 146 146 146.25 6.494 12.129 12.264 12.927
143 150 150 146 146 146 146 146 147.5 6.494 12.47 12.439 13.107
144 150 160 146 146 146 146 146 148.75 6.494 12.848 12.614 13.288
145 150 170 146 146 146 146 146 150 6.494 13.223 12.789 13.468
146 120 154.5 153.24 142.43 158.36 134.56 157.87 142.62 47.643 -2.1903 -1.7321 -2.0478
147 130 157.08 153.88 145.05 160.56 135.83 157.46 146.23 50.461 2.3991 3.4132 2.9554
148 140 160.95 155.8 147.36 161.25 137.16 153.78 149.54 51.534 8.11 9.0703 8.4962
149 150 164.5 159.12 148.42 160.44 138.09 149.49 152.51 52.6 13.882 14.508 13.83
150 160 158.21 163.61 149.71 158.25 139.28 147.48 154.57 55.06 18.593 18.973 18.194
151 170 153.31 166.12 149.46 157.43 140.91 144.64 156.48 56.761 21.393 22.015 21.172
152 125 142 156 160 158 149 161 147 7.845 0.10924 0.060112 0.48901
153 135 142 156 160 158 149 161 149.5 7.2 4.9043 5.3085 5.8538
154 145 142 156 160 158 149 161 152 6.701 10.224 10.705 11.353
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TABLE S4. ...continued. ab-initio calculated vs 2JSi-O-Si coupling model, continued. The initial geometry was optimized with
RHF/6-311G(d). Individual geometry, after structural constraint on Ω0,Ωk and φ, was not optimized. All Si-O bond distances were
fixed to 1.6 Å and O-Si-O intra-tetrahedral angle set to 109.5◦.

Index Ω0/1
◦ Ωk/1

◦ 〈Ω〉/1◦ φ/1◦ 2JSi-O-Si-coupling /Hz

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 ab-initio J(Ω0, 〈Ω〉, φ) J(Ω0, 〈Ω〉)
155 155 142 156 160 158 149 161 154.5 6.311 15.398 15.572 16.307
156 165 142 156 160 158 149 161 157 6.007 19.632 19.344 20.144
157 175 142 156 160 158 149 161 159.5 5.772 22.186 21.594 22.436
158 170 145 155 160 167 172 161 162.5 5.882 21.671 21.455 22.301
159 170 137 170 153 150.1 179.9 170 162.5 5.882 20.741 21.455 22.301
160 170 157 166 137 166 173 161 162.5 5.882 21.563 21.455 22.301
161 170 146 164 150 162 168 170 162.5 5.882 21.491 21.455 22.301
162 160 145 155 160 167 172 161 160 6.149 18.143 18.329 19.121
163 160 137 170 153 150.1 179.9 170 160 6.149 17.095 18.329 19.121
164 160 157 166 137 166 173 161 160 6.149 18.127 18.329 19.121
165 160 146 164 150 162 168 170 160 6.149 17.913 18.329 19.121
166 150 145 155 160 167 172 161 157.5 6.494 13.23 13.837 14.55
167 150 137 170 153 150.1 179.9 170 157.5 6.494 12.175 13.837 14.55
168 150 157 166 137 166 173 161 157.5 6.494 13.275 13.837 14.55
169 150 146 164 150 162 168 170 157.5 6.494 12.964 13.837 14.55
170 130 145 155 160 167 172 161 152.5 7.502 2.5666 2.9301 3.4326
171 130 137 170 153 150.1 179.9 170 152.5 7.502 1.8455 2.9301 3.4326
172 130 157 166 137 166 173 161 152.5 7.502 2.6513 2.9301 3.4326
173 130 146 164 150 162 168 170 152.5 7.502 2.3541 2.9301 3.4326
174 180 145 155 160 167 172 161 165 5.679 23.192 22.858 23.734
175 180 137 170 153 150.1 179.9 170 165 5.679 22.472 22.858 23.734
176 180 157 166 137 166 173 161 165 5.679 22.973 22.858 23.734
177 180 146 164 150 162 168 170 165 5.679 23.06 22.858 23.734
178 135 164 155 140 150 166 172 152.12 7.2 5.1271 5.5453 6.1002
179 145 164 155 140 150 166 172 154.62 6.701 10.523 11.031 11.691
180 155 164 155 140 150 166 172 157.12 6.311 15.748 15.976 16.723
181 165 164 155 140 150 166 172 159.62 6.007 19.973 19.804 20.617
182 175 164 155 140 150 166 172 162.12 5.772 22.458 22.084 22.939
183 127.5 135.6 142.8 161.2 155.4 147.3 169.8 145.89 7.668 1.1973 1.2069 1.6604
184 132.5 135.6 142.8 161.2 155.4 147.3 169.8 147.14 7.346 3.5995 3.8128 4.324
185 142.5 135.6 142.8 161.2 155.4 147.3 169.8 149.64 6.814 8.8003 9.1787 9.7959
186 152.5 135.6 142.8 161.2 155.4 147.3 169.8 152.14 6.399 13.998 14.183 14.89
187 162.5 135.6 142.8 161.2 155.4 147.3 169.8 154.64 6.076 18.462 18.233 19.01
188 172.5 135.6 142.8 161.2 155.4 147.3 169.8 157.14 5.825 21.434 20.87 21.695
189 120 168.34 168.34 168.34 169.06 169.06 169.06 156.53 -68.642 -0.50969 -1.0596 -1.4502
190 129.9 168.34 168.34 168.34 169.06 169.06 169.06 159 -63.499 4.9418 4.428 3.8716
191 130 172.78 172.78 172.78 173.11 173.11 173.11 162.21 -63.442 4.7433 4.7408 4.1717
192 140 177.8 177.8 177.8 177.24 177.24 177.24 168.14 -59.26 10.655 11.284 10.57
193 150 175.4 175.4 175.4 178.13 178.13 178.13 170.07 -57 17.058 17.172 16.365
194 160 179.1 179.1 179.1 177.75 177.75 177.75 173.82 -53.18 22.027 22.327 21.478
195 170 179.97 179.97 179.97 179.73 179.73 179.73 177.39 -51.021 25.272 25.957 25.093
196 180 178.58 178.58 178.58 178.68 178.68 178.68 178.97 -49.354 26.525 27.279 26.436
197 140 145 155 160 167 172 161 155 6.935 7.7815 8.4894 9.1052
198 140 137 170 153 150.1 179.9 170 155 6.935 6.8387 8.4894 9.1052
199 140 157 166 137 166 173 161 155 6.935 7.8553 8.4894 9.1052
200 140 146 164 150 162 168 170 155 6.935 7.5261 8.4894 9.1052

TABLE S5. ab-initio calculated vs 2JSi-O-Si coupling model from Sigma-2

Index Ω0/1
◦ Ωk/1

◦ 〈Ω〉/1◦ φ/1◦ 2JSi-O-Si-coupling /Hz

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 ab-initio J(Ω0, 〈Ω〉, φ) J(Ω0, 〈Ω〉)
site 2-3 153.45 148.7 153.45 148.7 172.76 153.45 160.8 155.595 0.47 16.0 15.035 15.035
site 1-3 172 137.2 158.21 158.21 160.8 153.45 153.45 158.165 -0.45 22.07 20.958 20.958
site 4-1 137.2 158.21 172.26 158.21 148.78 152.04 148.74 151.575 0.0 6.48 6.552 6.552
site 4-2 148.74 137.2 148.74 152.04 148.74 153.45 153.45 148.8878 27.95 11.09 12.652 11.993




