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The principal components and the relative orientation of the 2H paramagnetic shift and quadrupolar
coupling tensors have been measured for the MCl2·2D2O family of compounds, M = Mn, Fe, Co, Ni,
and Cu, using the two-dimensional shifting-d echo nuclear magnetic resonance experiment in order to
determine (1) the degree of unpaired electron delocalization and (2) the number and location of crys-
tallographically distinct hydrogen sites around oxygen and their fractional occupancies. Expressions
for the molecular susceptibility of 3d ion systems, where the spin-orbit coupling is a weak perturba-
tion onto the crystal field, are derived using the generalized Van Vleck equation and used to predict
molecular susceptibilities. These predicted molecular susceptibilities are combined with various point
dipole source configurations modeling unpaired electron delocalization to predict 2H paramagnetic
shift tensors at potential deuterium sites. The instantaneous deuterium quadrupolar coupling and shift
tensors are then combined with parameterized motional models, developed for trigonally (M = Mn,
Fe, Co, and Cu) and pyramidally (M = Ni) coordinated D2O ligands, to obtain the best fit of the experi-
mental 2D spectra. Dipole sources placed onto metal nuclei with a small degree of delocalization onto
the chlorine ligands yield good agreement with the experiment for M = Mn, Fe, Co, and Ni, while
good agreement for CuCl2·2D2O is obtained with additional delocalization onto the oxygen. Our
analysis of the salts with trigonally coordinated water ligands (M = Mn, Fe, Co, and Cu) confirms the
presence of bisector flipping and the conclusions from neutron scattering measurements that hydrogen
bonding to chlorine on two adjacent chains leads to the water molecule in the [M(D2O)2Cl4] cluster
being nearly coplanar with O–M–Cl involving the shortest metal-chlorine bonds of the cluster. In the
case of NiCl2·2D2O, the experimental parameters were found to be consistent with a motional model
where the D2O ligands are pyramidally coordinated to the metal and undergo bisector flipping while
the water ligand additionally hops between two orientations related by a 120� rotation about the Ni–O
bond axis. The position of the three crystallographically distinct hydrogen sites in the unit cell was
determined along with fractional occupancies. This restricted water ligand motion is likely due to van
der Waals interactions and is concerted with the motion of neighboring ligands. Published by AIP
Publishing. https://doi.org/10.1063/1.5037151

I. INTRODUCTION

Hyperfine interactions in paramagnetic samples cause
large nuclear magnetic resonance frequency shifts and enhance
nuclear spin relaxation rates.1–3 Paramagnetic shifts and relax-
ation enhancements have long been exploited in solution NMR
spectroscopy to study chemical equilibria,4 analyze unpaired
spin densities in transition metal complexes,5 determine dis-
tance constraints,6 and act as contrast agents in magnetic
resonance imaging.7 The incorporation of biologically com-
patible paramagnetic ions such as divalent cations of the iron
group and trivalent lanthanide cations into biomacromolecular
systems is well established as a powerful method for obtaining
additional information about protein structures, binding, and
activity.8

Magnetic resonance studies of paramagnetic samples in
the solid state are more challenging. In the decades following
the pioneering work of Bloembergen,9 analyzing paramag-
netic shifts in the single crystal proton NMR spectrum of

a)URL: http://www.grandinetti.org.

CuSO4·5H2O, solid-state NMR of paramagnetic materials was
used to explore magnetic effects and chemical bonding.10–15

Large paramagnetic frequency anisotropies and rapid trans-
verse relaxation rates, although undoubtedly a rich source
of electronic and structural information in these systems,
have historically led to a preference for single crystals at
low temperatures. This situation changed with the applica-
tion of magic-angle spinning (MAS), which provided suffi-
cient averaging of the inhomogeneous broadening to permit
accurate spectral interpretation, first in inorganic materials
and simple coordination complexes,16–18 followed by organic
and biological systems as continual increases to the attain-
able MAS rotation rates further improved spectral resolu-
tion.19–23 The constraints afforded by measuring site-specific
paramagnetic shifts and relaxation rates in solid-state NMR
have become an invaluable tool in the nascent field of NMR
crystallography.24–26

Additional information useful for electronic, magnetic,
and structural studies of materials can be found in the same
paramagnetic shift anisotropy (PSA) that MAS attempts to
remove from the spectrum. When the sample rotation rate
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is low enough, residual anisotropy survives as a spinning
sideband manifold, which can be analyzed for the PSA ten-
sor and linked back to material properties.27 The simul-
taneous existence of other nuclear spin interaction tensors
possessing frequency anisotropy, such as nuclear quadrupo-
lar coupling tensors, further enriches the depth with which
one can characterize material properties,12,28 but with one-
dimensional nuclear magnetic resonance spectra, resolution
can be impaired beyond the point of usefulness. Even when
high resolution is not critical, e.g., when only one magnetically
distinct NMR nucleus is present, there is usually a high degree
of correlated uncertainty among parameters analyzed from
such line shapes, particularly for stationary powder samples.

We recently introduced a two-dimensional experiment for
separating and correlating the first-order shift and quadrupo-
lar anisotropic line shapes.29 Two-dimensional approaches
are superior to analyses of one-dimensional static and MAS
patterns,30–32 allowing for a more precise determination of
relative tensor orientations as first illustrated by Ernst and co-
workers.33 An attractive advantage of the quadrupolar corre-
lation is that the magnitude and orientation of the quadrupolar
coupling tensor relative to the molecular or crystal frame is
relatively easy to determine and immune to not only magnetic
effects originating from the PSA but also those of macroscopic
origin such as crystalline demagnetizing fields. For this rea-
son, the correlation to the quadrupolar coupling proves to be a
valuable constraint on the orientation of the paramagnetic shift
tensor, allowing a determination of its molecular frame orienta-
tion even for polycrystalline samples. Using this approach with
2H NMR of CuCl2 · 2D2O, the experimental PSA was deter-
mined with such an accuracy that a point dipole model reveals
slight displacements of the chlorine dipole sources away from
the metal center to regions of high electron density.27,34

In this work, we further explore the potential of this
approach to model 2H two-dimensional NMR anisotropic cor-
relation spectra from a series of transition metal ion containing
salts, MCl2·2D2O with M = Mn, Fe, Co, and Ni, each hav-
ing total electron spins of S = 5/2, 2, 3/2, and 1, respectively.
These salts, each antiferromagnetic at low temperature, pos-
sess a high density of paramagnetic centers, making them
challenging from the perspective of a point dipole model.
Furthermore, the Mn, Fe, and Co members are isostructural,
making them particularly well suited for comparing different
models of unpaired electron delocalization. Here we adopt a
more detailed crystal field theory analysis for calculating the
molecular magnetic susceptibility of the transition metals via
the generalized Van Vleck equation. Using these more accurate
susceptibilities, we are able to identify motional models for
the water ligands, even in the perplexing case of NiCl2·2D2O,
and identify the number and location of crystallographically
distinct hydrogen sites around oxygen and their fractional
occupancies.

II. METHODS
A. Sample preparation

An enrichment apparatus capable of selectively applying
high vacuum or a flow of dry N2 gas at elevated temperatures

was designed to enrich the samples in deuterium while pre-
venting the formation of complexes with the hydration state
greater than that of the dihydrate. The apparatus consists of a
three-neck 50 mL round bottom flask with a gas inlet adapter
branched off a line between the N2 source and a mineral oil
bubbler. The flow of N2 into the flask could be controlled
with this adapter. Under N2 counterflow, the stoppered neck of
the flask could be removed to charge the flask with a desired
amount of material, manually stirred, or fitted to a high vac-
uum line. The flask was kept immersed in a mineral oil bath
on a hot plate used for magnetic stirring and holding the solu-
tion at a temperature (stable within a range of 5 �C) in which
the thermodynamically favored coexisting solid phase was the
dihydrate. Adding DCl to the solution also favors the dihy-
drate. Upon precipitation and drying of crystals under high
vacuum, the flask was transferred to a nitrogen filled glove
bag where the crystals were crushed and placed in a glass
vial for storage in a desiccator, preventing further exposure to
moisture. The pure samples could not be stored indefinitely in
this way, particularly FeCl2·2D2O, which oxidized noticeably
in a few days. Details specific to each sample are given in the
supplementary material.

B. NMR

All NMR experiments were performed at 9.4 T using a
single-channel Bruker static-sample probe on an Avance III
HD spectrometer. The spectrometer frequency for 2H was
exactly 61.495 MHz, corresponding to the resonance fre-
quency of heavy water, with additional carrier offsets of 3000
Hz, 10 761.63 Hz, and �8550 Hz for the experiments on
CuCl2·2D2O, FeCl2·2D2O, and MnCl2·2D2O, respectively. A
variable temperature (VT) controller supplied 1200 L/h gas
flow at 300.0 K to the sample to stabilize its temperature.

Each powdered sample was worked into a small capil-
lary tube by tapping the closed end of the capillary against a
countertop. Finely ground silica was used as a spacer to ensure
roughly a 6 mm stretch of the sample could be centered in the
NMR coil. By mass difference measurements, the final pack-
ing fraction was estimated to be less than or around 0.2 for
each sample. A tightly wound solenoid approximately 10 mm
in length with a turn density of approximately 4 turns/mm was
made by rolling 34 AWG copper over the same 1.7 mm OD
capillary NMR tube (Wilmad LabGlass) used as the sample
container. This allowed the coil to be slid directly over the
sample capillary and secured in a custom mount. The maxi-
mum rf strength generated with this coil was ⌫1(2H) = 660 kHz,
measured on a sample of neat D2O. Attempts to refine the pulse
lengths directly on each of the samples by minimizing the total
echo artifact indicated that pulse lengths calculated using ⌫1
were optimal to within 0.02 µs. For CoCl2·2D2O, FeCl2·2D2O,
and MnCl2·2D2O, it was recognized that the magnitude of the
total echo artifact could be reduced somewhat by dematch-
ing the probe to increase the excitation bandwidth. Hence,
pulse lengths were selected using a calibration table giving
pulse lengths as a function of probe attenuation and transmitter
power. The final pulse lengths and corresponding power set-
tings used in the experiments are reported in the supplementary
material.
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To separate and correlate the first-order quadrupolar cou-
pling and shift interactions, we use the three-pulse shifting-d
echo pulse sequence, shown in Fig. 1. We describe this
sequence in the context of the symmetry pathway notation35

where the spin transition functions are defined between spin
states |mii and |mji by

pI (mi, mj) = mj � mi,

dI (mi, mj) =

r
3
2

⇣
m2

j � m2
i

⌘
.

(1)

The spatial functions for the ⇠th interaction are defined using
the upper-case symbols according to

D{⇠ }(⇥) / R{⇠ }2,0 (⇥), (2)

where R{⇠ }2,0 is the irreducible second-rank tensor element in
the laboratory frame describing the spatial part of the NMR
frequency for the interaction labeled ⇠. The orientation depen-
dence of the spatial part is represented by ⇥, often given in
terms of a full-body rotation using the Euler angles (↵, �, �).
We adopt this approach here, using the z-y-z convention of
intrinsic Euler angle rotations.36

The first-order quadrupolar coupling contribution to the
NMR frequency is purely anisotropic and is written in sym-
metry pathway notation as

⌦(1)
q (⇥, mi, mj) = !q D{q }(⇥)dI (mi, mj), (3)

where !q is the quadrupolar splitting, defined as

!q =
6⇡Cq

2I(2I � 1)
, (4)

with Cq = eQ�I ⇣q/(4⇡✏0h) as the quadrupolar coupling con-
stant in Système International (SI) units where ⇣q is the electric

FIG. 1. Relevant spin transition pathways for the shifting-d echo experiment,
displaying the first observable transition pathway given in Eq. (6). (b) Pulse
sequence and spin transition pathways for the experiment. Signal acquisition
begins immediately after the final pulse where t2 = �⌧.

field gradient (efg) tensor anisotropy. Here, we have defined the
principal axis system (PAS) of a real second-rank symmetric
tensor as the coordinate system where its matrix representation
is diagonal with principal components, �ii, ordered accord-
ing to the Haeberlen convention,37 where |�zz | � |�xx | � |�yy|.
The anisotropic line shape is characterized by the anisotropic
strength parameter ⇣ ⇠ = �zz and asymmetry parameter
⌘⇠ = (�yy � �xx)/⇣ ⇠ . When two (or more) anisotropic inter-
actions are present, the line shape will depend on not only
the principal components describing each interaction but also
the relative orientations of their principal axis systems, which
can be described by Euler angles (↵rel, �rel, �rel). An impor-
tant feature of the first-order quadrupolar coupling is that it
is immune to the effects of magnetic susceptibility, making
the efg tensor a useful reference frame for determining the
orientation of the paramagnetic shift tensor in a molecular
frame.

The paramagnetic shift contribution27,38,39 to the NMR
frequency can be written using symmetry pathway notation as
the sum of two components

⌦(1)
P (⇥, mi, mj) = !0 Piso pI (mi, mj)

+ !0 ⇣PD{P }(⇥)pI (mi, mj), (5)

where Piso is the isotropic paramagnetic shift, ⇣P is the para-
magnetic shift anisotropy, and !0 is the nuclear Larmor fre-
quency. As all field shift interactions possess the same symme-
try representation, no experiment manipulating solely the spin
and spatial degrees of freedom of the sample can segregate
the paramagnetic shift from the closed-shell nuclear shielding
interaction, which dominates the field shifts of diamagnetic
compounds. Since shifts due to nuclear shielding for 2H are
two to three orders of magnitude smaller than the paramag-
netic shifts we report in this study, its contribution to the shift
parameters will be ignored.

The transition pathways for the shifting-d echo experi-
ment, beginning from the Zeeman order, [zI ], of a spin I = 1
nucleus like 2H are

{I = 1} :
8><>:

[zI ]! | � 1ih0| t1
2
! |1ih0| t1

2
! |0ih1|t2

[zI ]! |0ih1| t1
2
! |0ih � 1| t1

2
! | � 1ih0|t2

. (6)

These are illustrated in Fig. 1(b). The pI pathway, correspond-
ing to pure paramagnetic shift evolution, refocuses at t2 = 0,
while the dI pathway, corresponding to pure quadrupole
evolution, refocuses when t2 = t1. A (t1) = �1 shearing
transformation applied to the 2D shifting-d echo signal cor-
relates the two interactions along orthogonal dimensions and
a 2D Fourier transform yields the correlation spectrum.29 At
the two-dimensional time origin, t1 = t2 = 0, the evolution
due to both the (pI ) paramagnetic shift and (dI ) first-order
quadrupolar frequency contributions refocuses into a simulta-
neous echo which, in the absence of frequency contributions
with transition symmetries other than pI or dI , is a total
echo.

The sheared experimental spectra for the deuterated iron
group chloride dihydrates at 300.0 K are shown in Fig. 2.
All spectral processing, including affine transformations, was
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FIG. 2. Comparison of shifting-d echo 2H NMR experimental, best fit, and residual spectra for each of the MCl2 ·2D2O salts measured in this study. On the
horizontal axis, 1 kHz/MHz corresponds to 1000 ppm. Blank regions in the residuals correspond to points masked from the best fit analysis.

performed using the MacOS application RMN (version
1.8.4).40 In all experimental and simulated 2D spectra, the
color hue is linearly proportional to the NMR signal intensity

and the color saturation goes to zero as the NMR signal
intensity magnitude approaches zero. These 2D spectra con-
tain information related to the eigenvalues of both interaction
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tensors as well as their relative orientation. The distinctive
symmetry about the zero quadrupolar frequency axis is evi-
dent, along with a small spectral artifact which is a conse-
quence of pulse imperfections contributing to breakthrough
pathways29 which generate simultaneous p and d echoes (total
echo) for nonzero values of t1. Also shown are the projections
onto the horizontal and vertical axes, giving pure paramag-
netic shift and quadrupolar frequency spectra, respectively. If
desired, the principal components of the quadrupolar coupling
and paramagnetic shift tensors can be determined from these
1D patterns. The principal components can also be determined
from the 2D correlation spectrum itself if the relative orien-
tation of the tensor is simultaneously analyzed. We adopt the
latter approach and analyze the line shape directly from the
2D correlation spectrum—which forms the basis for validating
our modeling results—and report that the best fit parameters
estimated 95% confidence intervals (CIs) in Table I.

The residuals shown in Fig. 2 indicate that all salts exam-
ined here fit well to a single deuteron site. In crystalline
hydrates at room temperature, the deuterons undergo motion
on a faster time scale than the NMR experiment. This renders
all deuterons NMR equivalent and leads to a spectrum that
is characterized by motional averaged quadrupolar coupling
and paramagnetic shift tensors.29,41 In the absence of motion,
the instantaneous 2H efg tensor is expected to be axially sym-
metric with the eqzz axis lying along the O–D bond. Typical
values42 of the 2H Cq in crystalline hydrates are approximately
Cq = 230 kHz with ⌘q ⇡ 0, which we verify with a shifting-d
echo measurement of NiCl2·2D2O at 173 K as reported in the
supplementary material.

As discussed later, two of the angles describing the
relative orientation of the tensors are predicted to be inte-
ger multiples of ⇡/2, except for NiCl2·2D2O. We restricted
the domain of ↵rel for these fits, constraining �rel and �rel
to integer multiples of ⇡/2 in order to give a one-to-one
correspondence between the orientation parameters and a
unique 2D line shape.

C. Spectral modeling

The two-dimensional line shapes were subjected to max-
imum likelihood estimation according to the �2 parameter,
where �2 is the spectral noise-weighted sum of the squared
residuals. This was carried out with a C program using
Markov Chain Monte Carlo (MCMC) sampling according
to a Metropolis-Hastings algorithm43 to generate statistics
from goodness-of-fit comparisons to numerically generated
two-dimensional correlation spectra as functions of spectral
intensity, ⇣P, ⌘P, Cq, ⌘q, the Euler angles (↵rel, �rel, �rel)
describing the relative orientation of the paramagnetic shift and
quadrupole coupling tensors, and the Gaussian and Lorentzian
line broadening parameters for the paramagnetic shift dimen-
sion, �GB and �LB. The quadrupolar dimension was modeled
without any additional line broadening parameters. In our pre-
vious study29 of CuCl2·2D2O, we describe the development
of an improved 2D tenting algorithm, which we also utilize
here. Such 2D frequency domain tenting algorithms44,45 are
critical for achieving a sufficiently thorough Monte Carlo
sampling of the multidimensional �2 surface in a timely
manner.

For the CoCl2·2D2O, FeCl2·2D2O, and MnCl2·2D2O
spectra, suppression of the total echo artifact was significantly
poorer than for the CuCl2·2D2O and NiCl2·2D2O spectra and
was readily identified as a source of bias in the line broadening
parameters. This bias was partially removed by masking the
data at zero quadrupolar frequency before fitting. A mask was
also used to remove points with no significant signal inten-
sity. Despite these efforts, residuals above the level of noise
were observed for the best fit spectra, which choked the �2

hypersurface in the vicinity of the minimum and led to unrea-
sonably narrow confidence intervals, an effect which has been
discussed previously in the analysis of EPR line shapes.46

Rather than laboriously determine a way to model the bias—
which amounts to a rather small component particularly given
that residuals were still approximately normally distributed

TABLE I. Best fit tensor parameters determined from the 2D shifting-d echo line shapes for MCl2 ·2D2O samples at 300.0 K. Symbols inside angle brackets
represent motional averaged values. Since Npts & 1000, the degree of freedom correction is neglected in calculating the reduced chi-squared parameter, defined
here as �2

red = �2
best/Npts. Values are given as approximate 95% confidence intervals (CIs) determined from the chi-scaled MCMC routine. Values in between

the CI limits represent the best fit corresponding to the given �2
red.

M Piso (ppm) h⇣Pi (ppm) h⌘Pi hCqi (kHz) h⌘qi h↵reli (deg) h�relia (deg) h�relia (deg) �2
red

Cu 51+2
�3 147 ± 4 0.84+0.11

�0.04 118.0+1.7
�1.2 0.86 ± 0.01

f
95+7
�5

g
b,c [90]c 0 22.8

Ni �97+7
�6 551+14

�12 0.12+0.24
�0.10 77.2d 0.91+0.04

�0.01 [62] [114]e [171]d,e 1.46

Co 215+13
�11 1310+23

�19 0.23+0.04
�0.07 114.6+1.5

�0.7 0.95 ± 0.02 1800
�10 90 90 5.37

Fe 101+8
�12 1187+17

�24 0.40+0.06
�0.09 114.2+1.8

�0.6 0.98d,e 122+23
�5 90 90 6.30

Mn 145+13
�9 1236+17

�22 0.23+0.09
�0.23 111.4 ± 0.4 1.00a

f
136+33
�1

g
f 90 90 2.90

aConstrained, as justified above.
bCI for one-tailed distribution, with the domain boundary denoted by square brackets.
cBest fit solution of an analysis with constrained h↵reli and free h�reli has a slightly higher �2

red minimum.
dSignificant secondary probability maximum.
eConstraint released; refer to the supplementary material for probability histograms.

fA value of h⌘qi = 1 with other angle constraints implies that unique ↵rel can be restricted to the domain
"

3⇡
4

, ⇡
#
; CI is for the upper one-tailed distribution on this domain, and no

angle is prohibited with >99% confidence.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
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overall—we estimated the correct but unknown maximum
likelihood estimator by scaling the ordinary least squares max-
imum likelihood estimator. This was implemented by taking
the probability of accepting the ith step extending the Markov
chain according to

ln Paccept,i =

8>>><>>>:
0 if �2

i�1 > �2
i

1
2S�

⇣
�2

i�1 � �2
i

⌘
if �2

i�1 < �2
i

, (7)

which is the Metropolis criterion for the ordinary least squares
maximum likelihood estimator, scaled by S�. To assess
approximate 95% confidence intervals, we set this correc-
tion according to S� = 10�2

best/Npts, where �2
best is the

chi-squared parameter of the best fit and Npts are the num-
ber of points used in the fit, which were not apodized. In
this way, greater deviations from the current chi-square value
would be deemed as acceptable draws by the MCMC rou-
tine, allowing greater exploration of parameter space. This
compromise permits us to form approximate probability distri-
butions reflecting our uncertainty in the best fit parameters and
explore correlations between parameter uncertainties. We do
this by plotting histograms of distributions marginalized over
one and two parameters, which are shown in the supplementary
material.

III. THEORETICAL BACKGROUND
AND CALCULATIONS
A. Paramagnetic shift in the point dipole
approximation

The paramagnetic shift originates from the modulation
of the applied magnetic field by unpaired electrons.39 The
microscopic magnetic field at the nucleus is dominated by
magnetic fields resulting from the microscopic electric cur-
rents set up by the orbital motion of the electrons and the
spin of the electrons, respectively.47 These microscopic cur-
rents are distributed throughout space. It is often valid to
approximate the continuous distributions by one or more
point dipole sources, usually placed on neighboring atomic
nuclei. At a quantum mechanical level, the strength of the
magnetic moments of these dipoles (and hence the resultant
microscopic magnetic field) is determined by evaluating mag-
netic dipole moment operators in the given quantum state
of each paramagnetic complex. If the LS-coupling scheme
holds for each paramagnetic center, we can write for this
operator

µ̂ = �µB

⇣
L̂ + geŜ

⌘
/~, (8)

where µB is the Bohr magneton, L̂ and Ŝ are the electronic
orbital and spin angular momentum operators, and ge = 2.0023.
Rapid electron relaxation in the paramagnetic state means that,
on the NMR time scale, the nucleus couples to a microscopic
magnetic field BP arising from an average of µ̂ over thermally
accessible states. This thermal average, denoted here by m,
behaves like a classical magnetic moment. As such, BP behaves
classically, and in the point dipole approximation over a fixed
atomic lattice, we can write

BP(r) =
µ0

4⇡

X

k

1
3
k

f
3
⇣
m · k

⌘
k �m

g

+
2
3
µ0mS

 
1

2S
⇢(r)

!
(9)

for an ensemble of identical noninteracting paramagnetic com-
plexes. We also write k = rk � r for the separation vec-
tor directed from the kth point dipole source to the NMR
nucleus at r, rk for the position of the point dipole source, and

k = k / k for the unit vector along k . The second term of
Eq. (9) is the so-called “contact” term which arises from a
delta-function term in the classical expression for the mag-
netic field of a dipole and concerns the case when a true point
magnetic dipole, i.e., an electron spin, is placed inside the
NMR nucleus.48 It is relevant when a nonzero spin density
⇢(r) resides at the site of the NMR nucleus, as is often the case
in paramagnetic compounds due to the effects of spin delo-
calization and core polarization.47,49 It is also related to the
thermally averaged electronic magnetic moment of the para-
magnetic complex due to spin, mS . As detailed in Appendix B,
mS differs from m in that the orbital contribution to the mag-
netism is excluded, corresponding to the omission of L̂ in
Eq. (8) when evaluating the thermal average of µ̂. Using the
total spin magnetic moment mS of the complex, rather than
summing the thermally averaged magnetic moments of the 2S
individual unpaired electron spin moments, requires dividing
the contact term by 2S so that the average spin density per
unpaired electron appears in Eq. (9). In the contact term, we
assume that the unpaired spin density is not dependent on the
spin state of the complex so that it factors out of the thermal
average.

The thermally averaged electronic magnetic moment, m,
is related to the molecular susceptibility tensor, �, according
to

m =
1
µ0

� · B0. (10)

The quantity �, unlike m, is independent of the applied
magnetic field B0. We therefore define the field-independent
paramagnetic shift tensor, P, of the NMR nucleus in
terms of the microscopic magnetic field from which it
originates,

BP(r) = P · B0. (11)

Upon substituting Eq. (10) into Eq. (9) and comparing to
Eq. (11), we obtain for the through-space dipolar term

PD =
1

4⇡
� ·

X

k

1
3
k

f
3 k ⌦ k � 1

g
, (12)

where the summand is the familiar through-space dipolar cou-
pling tensor to the kth paramagnetic center. Here 1 refers to
the unit dyadic. Similarly, the contact term is given by

PC =
1

3S
�(S)⇢(r). (13)

The total paramagnetic shift tensor of the NMR nucleus in
the point-dipole approximation is P = PD + PC. A slightly
modified form of the susceptibility, �(S), appears in Eq. (13)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
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TABLE II. Principal components of the molecular susceptibility tensor used
in the calculation of PD. A constant diamagnetic correction �dia ⇡ 0.0019 Å3

has not been included.57

Compound �xx (Å3) �yy (Å3) �zz (Å3)

MnCl2 ·2D2O 0.2904 0.2904 0.2904
FeCl2 ·2D2O 0.2287 0.2287 0.3336
CoCl2 ·2D2O 0.0925 0.2170 0.3197
NiCl2 ·2D2O 0.0937 0.0937 0.0937
CuCl2 ·2D2O 0.0276 0.0295 0.0376

due to exclusion of the orbital moment from the thermally
averaged mS.

In the analysis that follows, the instantaneous paramag-
netic shift tensor parameters are calculated using the molecular
susceptibilities in Table II (vide infra) with a point dipole
source configuration inside of a spherical Lorentz cavity,
summed according to Eq. (12) with Mathematica.50 In pre-
vious work29 on CuCl2·2D2O, we found that a Lorentz cav-
ity with a radius of 60 Å was sufficient for less than 1%
error in the calculated parameters. All calculations reported
here utilize Lorentz cavities of 100 Å radius. It can be
assumed that the contributions of the paramagnetic con-
tact shift, PC, and a relatively tiny closed-shell nuclear
shielding contribution to the overall shift anisotropy are
negligible.

B. Molecular susceptibility

Far from magnetic saturation (µBB0 ⌧ kBT, where
T is the temperature), the molecular susceptibility is ana-
lyzed as a thermal average over the zero field energy
levels according to Van Vleck’s generalized susceptibility
equation,51,52

�ij =
µ0

P
m

f
WI

m,ij � kBT WII
m,ij

g
e�Em/(kBT )

kBT
P

m e�Em/(kBT )
. (14)

The energy eigenstates, |mi, of energy Em are specified in a
basis at zero applied magnetic field. Matrix elements of µ̂ are
contained in the W factors,

WI
m,ij =

X

n0
hm| µ̂i |n0ihn0 | µ̂j |mi, (15)

WII
m,ij =

X

n00

hm| µ̂i |n00ihn00 | µ̂j |mi + hm| µ̂j |n00ihn00 | µ̂i |mi
Em � En00

.

(16)

In Eq. (15), the single prime summation carries with it an
instruction to sum only over states degenerate with |mi; the
double prime summation in Eq. (16) carries the opposite
instruction.

To apply the Van Vleck equation, the energy level struc-
ture of the magnetically active manifold must be known;
i.e., the eigenvalue problem must be solved for the zero-field
Hamiltonian. This can be done using the framework of crystal
field theory.51 As is well known, the best strategy to solve this
problem within this framework depends on both the number
of unpaired electrons and the relative size of the following
terms:

• V̂ee : O(1 � 100 eV), the interelectron Coulomb repul-
sion;

• V̂cf : O(0.01 � 10 eV), the crystal field potential;
• Ĥso : O(< 0.1 eV), the spin-orbit coupling.

In general, V̂ee & V̂cf & Ĥso for the 3d shell of iron group
cations, suggesting a weak crystal field approach in which the
spin-orbit coupling is considered as a perturbation onto the
electronic configuration established by Ĥ0 = V̂ee + V̂cf so that
the LS-coupling scheme applies. There is no orbital contribu-
tion to the magnetism whatsoever when the ground state of this
electronic configuration is orbitally nondegenerate (i.e., non-
degenerate in the neglect of the spin degrees of freedom) and
Ĥso = 0. In this case, the molecular susceptibility is isotropic
and obeys the Curie law,

� =
µ0µ2

Bg2
eS(S + 1)

3kBT
1. (17)

Weak spin-orbit coupling reintroduces an orbital contri-
bution to the magnetism, leading to susceptibility anisotropy
and violation of the Curie law’s characteristic T�1 dependence.
The molecular susceptibility for such spin-orbit dequenched
systems is given by

� = µ0µ
2
B

"
�2⇤ +

S(S + 1)
3kBT

g · g � S(S + 1)(2S + 3)(2S � 1)
30(kBT )2

g · g · D
#
, (18)

whose derivation from the Van Vleck equation using perturba-
tion theory is outlined in Appendix A. Each term involves the
symmetric negative semi-definite orbital angular momentum
dequenching tensor ⇤, with components47,53,54

⇤ij =
1
~2

X

↵>0

h0|L̂i |↵ih↵ |L̂j |0i
E0 � E↵

, (19)

and which has units of inverse energy. Here, ↵ refers to the
ordering of electronic states. The dependence on⇤ is explicitly

shown for the temperature independent term and encoded into
the symmetric EPR g tensor, introduced in the T�1 dependent
term, and the traceless symmetric part of the zero field splitting
tensor D, introduced in the T�2 dependent term,55 according
to

gij = ge�ij + 2�so⇤ij, (20)

Dij = �
2
so

 
⇤ij �

1
3

Tr{⇤}
!
. (21)
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Equation (18) is valid provided that the spin-orbit coupling
constant �so obeys |�so| ⌧ E1, where E1 is the energy of the
first excited electronic state relative to the ground state, and
provided that the splittings of the ground manifold are small
enough to be treated in the high temperature approximation.
When these conditions do not hold, one must generally resort
to a numerical evaluation of the Van Vleck equation. A concise
expression for the “spin molecular susceptibility” �(S) in spin-
orbit dequenched systems can also be written and is given in
Appendix B.

Finally, the Van Vleck equation gives the susceptibility
of a single isolated paramagnetic center. In the iron group
chloride dihydrates, the paramagnetic centers interact with
each other. In the paramagnetic phase, this effect can be
approximately handled by using an effective temperature,
T eff = T � Tc, in the susceptibility expressions, where Tc is
the Weiss constant. For example, in Eq. (17), we have

� =
µ0µ2

Bg2
eS(S + 1)

3kB(T � Tc)
1, (22)

the so-called Curie-Weiss law common to the literature on
magnetic susceptibilities.51

C. Molecular susceptibility calculations

Here we describe how � is evaluated for each of the
divalent metal cations in the dihydrate salts measured in
this work. The crystal field for each metal is predomi-
nantly cubic, with a potential represented by V̂cb. Further
tetragonal (V̂ax) and rhombic (V̂rh) distortions of the crys-
tal field lead to a pseudo-D2h metal complex. Symmetry
descent from the free ion is used to consider the effects
of the different crystal field terms. To aid in the follow-
ing discussions, the crystal field energy level diagrams are
given in the supplementary material. We generally consider
effects that influence the result to a 5% level. A similar
approach, using the angular overlap method, has been previ-
ously described.56 The principal components of the molecular
susceptibility tensors calculated in this section are given in
Table II.

1. MnCl2·2D2O: Mn2+, 6S

The Mn2+ free ion term, 6S, signifies an orbital singlet
state (L = 0) whose character is not appreciably altered by
the distorted cubic crystal field. The excited terms are over
3700 meV removed from the ground state.58,59 Deviation of
the g-tensor components from the free-electron g-value has
not been detected, and very weak zero field splittings around
0.01 meV are primarily from effects beyond those captured by
our description of spin-orbit dequenched magnetism.60 With
a high level of confidence, we have ⇤ = 0, and therefore,
take the isotropic Curie-Weiss law, Eq. (22), with S = 5/2
and a Weiss constant61 of Tc = �14.5 K to calculate the
molecular susceptibility for MnCl2·2D2O. The Weiss correc-
tion leads to a small decrease of the isotropic susceptibility
from the isolated spin-only prediction of Eq. (17), as shown in
Fig. 3.

FIG. 3. Plot of the principal components given in Table II. Square boxes, con-
nected by a dashed line to guide the eye, are the isolated spin-only prediction
at T = 300 K according to the Curie law, Eq. (17).

2. FeCl2·2D2O: Fe2+, 5D

The free ion ground state of Fe2+ is 5D, whose five-fold
orbital degeneracy is partially lifted in a cubic crystal field to
produce a T2g orbital triplet ground state. Any T state subspace
has proper first-order orbital angular momentum with a ficti-
tious L̃ = 1, with this particular T state possessing a fictitious
orbital g factor47,53 of g̃L = �1. As illustrated in Fig. S3 of
the supplementary material, further descent from the Oh point
group must lift the orbital degeneracy as only nondegenerate
electronic states are permissible electronic eigenfunctions of
the symmetry operations of D2h, and such states cannot pos-
sess first-order orbital angular momentum.51 Room tempera-
ture susceptibility measurements have never been published;
fortunately, the electronic states of FeCl2·2H2O, as well as
FeCl2·2D2O, are well known by Raman spectroscopy.62 A
detailed analysis of these data by Graf,63 aided by low tem-
perature magnetic susceptibility measurements showing an
(accidentally) axial g-tensor,64 showed a ground B1g state sep-
arated from the first excited B2g state by over E1 = 60 meV.
The second excited B3g state lies about E2 = 210 meV above
the ground state. Each of these states is a quintet with respect
to the spin degrees of freedom, which is split upon introduction
of the spin-orbit coupling giving rise to significant zero-field
splittings65,66 approaching 1.2 meV⌧ kBT = 26 meV at 300 K.
Since E1 is rather large compared to �so(Fe2+) = �12 meV67

and high enough to avoid significant thermal population at
room temperature, we consider FeCl2·2D2O to fulfill the
criteria for second-order spin-orbit dequenched magnetism,
permitting the use of Eq. (18) to calculate the molecular sus-
ceptibility. Following Graf, we determine the principal com-
ponents of the orbital angular momentum dequenching tensor
to be

⇤zz = �0.0160 meV�1,

⇤xx = ⇤yy = �0.0047 meV�1,

where the principal z-axis, directed along the short Fe–Cl bond
of the complex, is common to both the dequenching and sus-
ceptibility tensors. We used an orbital reduction parameter68

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
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of 0.9 to approximate the reduction of the spin-orbit cou-
pling strength through the effects of covalency, although other
values can be justified to improve consistency with other anal-
yses.65,66 The Weiss constant is |Tc| . 10 K and we neglect its
contribution here.64

We can compare the molecular susceptibility of the Fe2+

case calculated using Eq. (18) to that of the Mn2+ case calcu-
lated using Eq. (22) in Fig. 3. The anisotropic orbital dequench-
ing tensor of the former case leads to significant molecular
susceptibility anisotropy, with a nearly 60% deviation of �zz
from the isolated spin-only prediction of Eq. (17) but only
about a 10% deviation for the other two principal components.
The deviation from the spin-only prediction is always positive
owing to the negative sign of the spin-orbit coupling constant,
leading to positive deviations from ge in Eq. (20). The relative
contribution of the g, temperature independent, and D terms to
the susceptibility is given in Table S-V of the supplementary
material, where it is seen that the latter two terms make com-
parable and significant contributions at 300 K to the molecular
susceptibility.

3. CoCl2·2D2O: Co2+, 4F

The free ion ground state of Co2+ is 4F. As with
FeCl2·2D2O and illustrated in Fig. S4 of the supplementary
material, an orbital triplet results as the ground state when the
cubic field is imposed onto the Co2+ free ion, which contains
some excited 4P character due to a configuration interaction.47

Another orbital triplet and an orbital singlet result as first and
second excited states. The most significant complication is due
to the fact that the crystal fields V̂ax and V̂rh in distorted octa-
hedral cobaltous complexes are of comparable strength69 to
�so(Co2+) = �22 meV67 and often produce insufficient sep-
aration between the ground and excited electronic states to
permit application of the expressions pertinent to the spin-
orbit dequenched magnetism. In other words, the electronic
ground state of octahedrally coordinated cobaltous complexes
often remains quasi-degenerate and orbital angular momen-
tum is not effectively quenched to even first order. Thus, we
cannot utilize the dequenching tensor expression of Eq. (18)
and revert back to the more general Van Vleck expression of
Eq. (14).

While sufficient data characterizing the electronic states
of CoCl2·2D2O is lacking, a valuable set of low temperature
(<120 K) bulk magnetic susceptibility measurements and anal-
ysis by Narath28 is available. He numerically evaluated the Van
Vleck equation using zero field eigenfunctions determined via
the diagonalization of

Ĥ = �ax

"
1
~2

L̂2
z �

2
3

1̂
#

+
1
2
�rh

~2

f
L̂2

+ + L̂2
�
g

+
g̃L�so

~2
L̂ · Ŝ (23)

carried out in a fictitious L̃ = 1 representation of the cubic field
T state. The parameter  = 0.9, incorporating the covalency
reduction and the effect of the 4F–4P configuration interaction,
is fixed, along with a T state orbital g-factor47,54 of g̃L = � 3

2 .
The values of�ax and�rh, corresponding to the strengths of the
axial and rhombic crystal field distortions, are determined by
fitting the principal components of the predicted bulk magnetic
susceptibility tensor to the measured values as a function of

temperature. We have reanalyzed Narath’s data70 with nearly
the same method,71 assuming that the bulk magnetic suscepti-
bility tensor �m is proportional to the molecular susceptibility
tensor according to

�m =
NA

VM
�, (24)

where NA is Avogadro’s number and VM is the molar volume.
Our best fit to his data72 gives

�ax = �125 meV, �rh = �43 meV,

which nominally gives E1 = 87 meV. This is shown in Fig. S7
of the supplementary material. In addition, there is a large zero
field splitting which splits the spin quartet into two Kramers
doublets separated by 15.7 meV, which is on the order of
kBT at 300 K. This structure is illustrated in Fig. S4. With
the crystal field assumed to be temperature independent, we
extrapolate � to T = 300 K with our first-order numerical
treatment using the full Van Vleck equation, Eq. (14). At
300 K, the x-axis of the PAS is oriented along the Co–O
bond and the z-axis is oriented along the short Co–Cl bond.
The overall effects of cooperative magnetism are not sig-
nificant in the paramagnetic phase of this compound, with
|Tc| ⇡ 0 K.

Figure 3 shows the exceptionally large molecular suscep-
tibility anisotropy resulting from the quasi-first order contri-
bution of the orbital moment to the magnetic properties of
the Co2+ ion in this compound. The value of �xx is nearly
250% above the spin-only prediction with S = 3/2 and nearly
350% larger than �zz, which falls nearly 30% below the
spin-only value. Interestingly, our extrapolation to room tem-
perature predicts interchange of the Haeberlen-convention
labeled z- and x-axes near 163 K as a result of the PAS
component of lowest magnitude exhibiting only a weak tem-
perature dependence, which can be seen in Fig. S7 of the
supplementary material. The large negative deviations of �zz
component would be difficult to realize at high temperatures
in the second-order spin-orbit dequenched approximation of
Eq. (18) as they must result from the D term when �so < 0.
Such an approximation of the magnetism of CoCl2·2D2O
would not have been adequate for predicting NMR shift
tensors.

4. NiCl2·2D2O: Ni2+, 3F

The free ion ground state of Ni2+ is 3F. The splitting
of the F term in the cubic field gives the same states as
for Co2+, but the order of energy is inverted. As shown in
Fig. S5 of the supplementary material, the A2g orbital sin-
glet now comprises the ground manifold, with the next T2g
orbital triplet lying some 1000 meV higher, which is split fur-
ther by the axial and rhombic crystal field distortions. The
spin degeneracy of the ground and excited states is, as usu-
al, lifted by the spin-orbit coupling (�so(Ni2+) = �40 meV).67

The conditions allowing use of Eq. (18) are well met.
The dequenching tensor is approximately isotropic, as con-
firmed by the measurements of an isotropic g-tensor with
gxx = gyy = gzz = 2.23 and a relatively small zero field splitting
of around 0.07 meV near room temperature.73 On the basis of

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
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the g-tensor measurement, we find an isotropic dequenching
tensor,

⇤xx = ⇤yy = ⇤zz = �0.0029 meV�1.

We also take a Weiss constant74 of Tc = +11 K for the effective
temperature used in Eq. (18). As for the Mn2+ compound,
the isotropic orbital dequenching tensor leads to an isotropic
molecular susceptibility tensor, as shown in Fig. 3. Both the
g term and Weiss correction contribute to positive deviations
from the spin-only prediction of the susceptibility, giving a net
deviation of about 30% for each component.

5. CuCl2·2D2O: Cu2+, 2D

The free ion ground state of Cu2+ is 2D. After impo-
sition of the crystal field, the ground state term has Ag
symmetry, as shown in Fig. S6 of the supplementary mate-
rial. In spite of a significant spin-orbit coupling constant,
�so(Cu2+) = �103 meV,67 matrix elements of L̂ connecting
the first excited Ag electronic state are zero, and the next set
of electronic excited states which can contribute to orbital
dequenching originate from an orbital triplet that is approx-
imately 1550 meV removed from the ground state.75 Since
S = 1/2, there is no zero field splitting and Eq. (18) is valid.
The g-tensor of the dihydrate complex has been measured
precisely,76 and from it, we determine

⇤zz = �0.001 60 meV�1,

⇤yy = �0.000 48 meV�1,

⇤xx = �0.000 22 meV�1.

As with g, the z-axis of the PAS coincides with the long Cu–Cl
bond and the x-axis is aligned with the Cu–O bonds. There are
two types of chains in this compound which differ in their ori-
entation of g with respect to the crystal frame, requiring that the
dipolar summation in Eq. (12) is carried out over two sublat-
tices, one for each orientation of �. The effects of cooperative
magnetism are not significant in the paramagnetic phase of this
compound. As expected, the molecular susceptibility tensor is
anisotropic—to a lesser extent than the Co and Fe cases—with
small positive deviations from the spin-only prediction visible
in Fig. 3.

D. Water coordination and motional models

The 2H NMR spectral analysis is complicated by rapid
molecular motion of the water molecule which occurs on a
faster time scale than the NMR experiment. Since the shifting
d-echo spectrum of all dihydrate salts are exceptionally well-
modeled using a single deuteron site, we infer that there is
only motional disorder over well-defined positions which is
fast on the NMR time scale. In the presence of such motional
averaging, even if a detailed motional model is known, there
will be loss of information about the “instantaneous” tensor,
i.e., the tensor in the absence of motion. Thus, the impact of
such dynamics must be carefully considered when interpreting
measured tensor parameters.

The water ligands in crystalline hydrates possess internal,
rotatory, and translatory vibrational modes77 which result in
slight averaging of the instantaneous NMR parameters.78,79

Our motional model begins with the assumption that the aver-
aging effects of the vibrations can be ignored. The ligands gen-
erally undergo internal deuteron exchange due to the activation
of a two-fold hopping motion about the C2 site-symmetry
axis, as illustrated in Fig. 4(a). This motion is a hallmark
of water ligands and is always present at room temperature
regardless of coordination. The complete details of the water
ligand motion, however, depend on the geometry of its coor-
dination to the metal center as well as steric and electrostatic
interactions with neighboring atoms, both of which strongly
influence each other. Water ligand coordination is generally
classified in terms of lone pair model of coordination into trig-
onal, pyramidal, and tetrahedral in solid hydrates.77 In trigonal
coordination, the bisector of the two lone pairs on oxygen is
directed toward the metal; in pyramidal coordination, only one
lone pair on oxygen is directed towards the metal; and in tetra-
hedral coordination, lone pairs are directed toward different
metals.

The crystal structure80–83 and magnetic properties28,64,84,85

of the iron-group halide dihydrates were investigated exten-
sively in the 1960s. In the isostructural salts, CoCl2·2D2O,
FeCl2·2D2O, and MnCl2·2D2O, planar MCl2 chains propa-
gate along the c-axis of the monoclinic (C2/m) crystal frame
forming a polymeric linear chain. Water molecules are coor-
dinated to the metal at the two remaining octahedral sites and
adopt a trigonal configuration. Adjacent MCl2 chains along
the b-axis are held together by hydrogen bonds as illustrated
in Fig. 5. This hydrogen bonding to chlorine on two adjacent
chains leads to the water molecule in the [M(D2O)2Cl4] clus-
ter being nearly coplanar with O–M–Cl involving the shortest
metal-chlorine bonds of the cluster. A later neutron diffrac-
tion study by Schneider and Weitzel86 at 4.2 K in FeCl2·2H2O
confirmed that the hydrogen bonding leads to the Cl atoms of
neighboring chains being coplanar with the hydrogen of the
ligand.

Similarly, the structure of CuCl2·2D2O determined by
X-ray88 and neutron diffraction83,89 consists of columns of
planar CuCl2·2D2O molecules stacked along the b-axis of the
orthorhombic (Pmna) crystal frame. The columns are held

FIG. 4. (a) Bisector flipping of a water ligand in a ligand-fixed frame where
the water molecule lies in the x-y plane with the oxygen atom at the origin
and the y-axis lies along the D–O–D angle bisector. (b) Bisector flipping of
a trigonally coordinated water ligand in a lattice-fixed frame where oxygen
defines the origin, the y-axis lies along the metal-oxygen bond, and the x axis
is in the plane of the metal-oxygen bonds of the chain. Relative atomic radii
and distances are not to scale.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
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FIG. 5. Illustration87 of the polymeric linear MCl2 chains and the trigonally
coordinated water ligands with their hydrogen bonding in a fragment of the
CoCl2 ·2D2O structure.

together by hydrogen bonds O–H· · ·Cl with each Cl accept-
ing two hydrogen bonds at nearly right angles to each other.
The water ligand is trigonally coordinated to the metal and
the hydrogen bonding with chorine also leads to the water
molecule being nearly coplanar with Cl–Cu–O involving the
shortest metal-chlorine bonds of the [Cu(D2O)2Cl4] clus-
ter. In a previous work29 on CuCl2·2D2O, we found that a
motional model of trigonally coordinated water with sim-
ple bisector flipping and the water molecule coplanar with
the Cl atoms of neighboring chains gave good agreement
for the experimental quadrupolar tensor and paramagnetic
shift tensor calculated with the point-dipole approximation of
Sec. III A.

The structure of NiCl2·2H2O is somewhat different.
Morosin82 found that NiCl2 chains propagate along the two-
fold axis of the monoclinic lattice forming a corrugated poly-
meric chain as illustrated in Fig. 6. The NiCl4 planes of

FIG. 6. View down the a axis of the NiCl2 ·2D2O crystal structure. Hydrogen
atoms are not shown.

adjacent Ni atoms in the chains are tipped with respect to each
other, forming an angle of 167.94� between the two NiCl4
planes. Hydrogen atoms could not be located and to date are
unpublished. Morosin speculated that hydrogen bonding to
chlorine on neighboring chains may be weakly bi- and tri-
furcated and are located along the bisector of the Cl–O–Cl
angle while the other causes the oxygen-hydrogen vector to
point toward the center of a triangle defined by an oxygen
and a chlorine on an adjacent chain and the nearer oxygen on
the same chain. This suggests a pyramidal water ligand to the
metal.

In light of these structural data, we examined a num-
ber of motional models involving trigonal and pyramidal
water coordinations. The two specific models most consis-
tent with the experimental results are presented here. In these
models, we start with a general expression for the observed
quadrupolar coupling (efg) or shift tensor of a deuteron under-
going exchange between N distinct sites and given by the
average

hR {⇠ }i =
NX

j=1

pjR
{⇠ }
j , (25)

where R {⇠ }j is the NMR interaction tensor of the jth deuteron
site and pj is the relative site occupancy such that

P
j pj = 1.

The orientation of the principal axis system of the motional
averaged efg and shift tensors are determined in a lattice-
fixed frame, here chosen such that oxygen defines the ori-
gin, the y-axis lies along the metal-oxygen bond, and the
x-axis is in the plane of the metal-oxygen bonds of the MCl2
chain.

The N-site exchange leads to a 2D correlation spectrum
characterized by a single site, as seen in Fig. 2. Note that
there is one crystallographically distinct oxygen site in the
crystal structures of all salts considered here. Whether neu-
tron data are available or not, our goal is to use the 2D
correlation spectrum and the heavy atom lattice symmetry
to determine the number and location of crystallographically
distinct hydrogen sites around oxygen and their fractional
occupancies.

The efg at each deuterium arises predominantly from its
O–D bond in the water ligand. While the motional averaged
efg tensor is sensitive to the ligand-metal coordination geom-
etry and ligand motion, it is not sensitive to the absolute ligand
orientations relative to the crystal frame since the O–D bond,
that is, the dominant source of the efg, moves with the water
ligand. On the other hand, the dominant source of the shift
tensor at each deuterium site, i.e., the paramagnetic transi-
tion metal atoms, is fixed in the lattice and independent of
ligand motion. Thus, the shift tensor at each deuterium site,
as well as the motional average, is sensitive to the absolute
ligand orientations. In this context, the single site nature of
the 2D spectrum then becomes a critical constraint as the
motional averaging among the crystallographically distinct
hydrogen sites on each oxygen must lead to isometric ten-
sors in the crystal frame. Under these constraints, it can be
shown (Appendix C) that each set of crystallographically dis-
tinct hydrogen sites and their fractional occupancies can be
propagated to all other sites in accordance with the overall
heavy atom lattice symmetry.
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1. Trigonal motional model

In the case of trigonal water coordination, we only con-
sider deuteron exchange by way of 180� flips about the bisector
axis illustrated in Fig. 4(b). To model this motion, we take
N = 2 and p1 = p2 = 0.5 in Eq. (25) obtaining the average
tensor

hR {⇠ }i = 1
2

f
R {⇠ }1 + R {⇠ }2

g
. (26)

To calculate the average efg tensor, it is convenient to begin in
the ligand-fixed frame, illustrated in Fig. 4(a), where we first
define a unit vector along the O–D bond for the first deuteron
as

r̆1 = sin ✓w x̆w + cos ✓w y̆w , (27)

where ✓w is half the D–O–D bond angle. The position of the
second deuteron site is related by an active rotation about the
y-axis of the ligand-fixed frame by ⇡, with r̆2 = Dyw (⇡)r̆1.
The axially symmetric efg tensor of each deuteron site, A{q }i ,
can be expressed as

A{q }i =
⇣q

2
[3r̆i ⌦ r̆i � 1], (28)

where ⇣q is the instantaneous efg tensor anisotropy. The
motional averaged efg tensor hA{q}i is given by

hA{q }i = 1
2

f
A{q }1 + A{q }2

g
. (29)

This leads to the nonzero Cartesian components,

hA{q }xx i =
⇣q

2

f
3 sin2 ✓w � 1

g
, (30)

hA{q }yy i =
⇣q

2

f
3 cos2 ✓w � 1

g
, (31)

hA{q }zz i = �
⇣q

2
, (32)

in the ligand-fixed frame. Through the passive transformation

hR {q }i = D
�1
yw (��d)hA{q }iDyw (��d), (33)

the motional averaged efg tensor is expressed in the lattice-
fixed frame.

When the bond angle of the water ligand is in the range
90� < 2✓w . 109.47�, we find ���hA{q }zz i��� � ���hA{q }xx i��� � ���hA{q }yy i���,
indicating that the PAS of the motional averaged efg coincides
with the ligand-fixed frame. We denote the motional averaged
efg tensor expressed in its PAS by h⇢{q}i. For the present case,
we have h⇢{q}i = hA{q}i,

h⇣qi = �⇣q/2, and h⌘qi = �3 cos 2✓w . (34)

On the other hand, when 2✓w & 109.47�, we find���hA{q }xx i��� � ���hA{q }zz i��� � ���hA{q }yy i��� and the PAS of the motional
averaged efg is defined by interchange of the x- and z-axes of
the ligand-fixed frame,

h⇢ {q }i = D
�1
yw (⇡/2)hA{q }iDyw (⇡/2). (35)

Here we find

h⇣qi = �
⇣q

2
(3 sin2 ✓w � 1),

h⌘qi =
3 cos2 ✓w

2 � 3 cos2 ✓w
.

(36)

When 2✓w is the tetrahedral angle, ⇠109.47�, we obtain
h⇣qi = ⇣q/2 and h⌘qi = 1. On the basis of the experimen-
tally measured motional averaged hCqi and h⌘qi values in
Table I and the assumption that the instantaneous Cq value
of 230 kHz for the 2H in the O–D bond of water and a
D–O–D angle near 109.47�, we find that the trigonal motional
model is consistent for the Mn, Fe, Co, and Cu salts with
h⇣qi ⇡ ⇣q/2 and h⌘qi ⇡ 1.

The paramagnetic shift tensor from Eq. (12) is calculated
in the lattice-fixed frame. In this frame, the separation vectors
for the two deuteron sites are given by

1,k = rk �Dy(�d)r1,

2,k = rk �Dy(�d + ⇡)r1,
(37)

where r1 = rODr̆1, with rOD equal to the O–D bond length,
and rk represents the coordinates of the kth dipole source. The
active rotation of r1 byDy(�d), where �d is the dihedral angle,
sets the orientation of the trigonally coordinated ligand in the
lattice-fixed frame.

The motional averaged paramagnetic shift tensor in the
lattice-fixed frame, hR{P}i, can be found by calculating the
instantaneous paramagnetic shift tensors R {P }1 and R {P }2 and
averaging according to Eq. (26). A C2 point symmetry of the
lattice with respect to the y-axis of the lattice-fixed frame, i.e.,
the water bisector, is present for all salts with trigonally coor-
dinated waters, i.e., CuCl2·2D2O, CoCl2·2D2O, FeCl2·2D2O,
and MnCl2·2D2O. With this C2 point symmetry, we have

2,k = Dy(⇡) 1,k and obtain

hR {P }i = 1
2

f
R {P }1 + Dy(⇡)R {P }1 D

�1
y (⇡)

g
. (38)

With this relation, we only need to calculate the point dipole
sum of Eq. (12) for one deuteron site.

Through the passive transformation

hA{P }i = D
�1
y (�d)hR {P }iDy(�d), (39)

the motional averaged paramagnetic shift tensor in the
lattice-fixed frame is expressed in the ligand-fixed frame.
If 2✓w . 109.47�, then the ligand-fixed frame coincides
with the PAS of the motional averaged efg tensor. When
2✓w & 109.47�, an additional ⇡/2 rotation about yw is needed to
bring the shift tensor into the PAS of the motional averaged efg
tensor, which is the case for CuCl2·2D2O. The relative orienta-
tion of the efg and shift tensors is then determined by a numer-
ical diagonalization of the shift tensor, and the Euler angles
(h↵reli, h�reli, h�reli) define the passive rotation which takes
the PAS of the paramagnetic shift tensor into that of the efg.

2. Pyramidal motional model

In the case of NiCl2·2D2O, we adopt a model where the
water ligands are in pyramidal coordination and undergoing



084503-13 Walder et al. J. Chem. Phys. 149, 084503 (2018)

FIG. 7. Combined bisector flipping and three-fold rotation of a pyramidally
coordinated water ligand in a lattice-fixed frame where oxygen defines the
origin, the y-axis lies along the metal-oxygen bond, and the x axis is in the
plane of the metal-oxygen bonds of the chain. Bisector flipping exchanges
the two deuterons but maintains the overall ligand configuration, whereas the
three-fold jumping motion changes the ligand configuration and carries the
deuterons to unoccupied (white) sites. Deuteron sites are labeled according to
Eq. (41). Relative atomic radii and distances are not to scale.

an exchange among three deuteron sites. The overall ligand
motion can be seen as a combination of two types of motion:
an exchange of deuterons through flipping about the bisector
of the D–O–D angle and an exchange of deuterons through a
three-fold rotation about the metal-oxygen bond, both illus-
trated in Fig. 7 in a lattice-fixed frame. Both types of motion
are fast on the NMR time scale and lead to single motional
averaged tensors.

To calculate the average efg tensor from this motion, we
start in the lattice-fixed frame. A unit vector along the O–D

bond for the first deuteron can be written as

r̆ =
2p
3

sin ✓w x̆ +
"
1 � 4

3
sin2 ✓w

#1/2

y̆. (40)

Note that 2✓w < 120� due to restrictions of pyramidal geom-
etry. With this definition, the unit vectors defining the three
deuteron sites in the lattice-fixed frame are

r̆1 = Dy

 
�d �

2⇡
3

!
r̆,

r̆2 = Dy(�d)r̆,

r̆3 = Dy

 
�d +

2⇡
3

!
r̆.

(41)

Similar to Eq. (28), we calculate the efg tensor for each site in
the lattice-fixed frame from these vectors,

R {q }i =
⇣q

2
[3r̆i ⌦ r̆i � 1]. (42)

For the motionally averaged tensors in the lattice-fixed frame,
we have

hR {⇠ }i = p1R {⇠ }1 + p2R {⇠ }2 + p3R {⇠ }3 . (43)

A motional average over all three sites with equal occupancies
leads to an axially symmetric (h⌘qi = 0) efg tensor, contrary to
the experimentally observed h⌘qi ⇡ 1; thus, equal occupancies
must be eliminated as a possibility. To keep the assumption
of pyramidal coordination, we must consider unequal occu-
pancies of the three sites—a likely consequence of van der
Waals interactions as well as hydrogen bonding between the
water ligand and neighboring lattice sites. The closest of such
interactions arise as neighboring water molecules are pushed
together by the corrugation of the linear chains, which results
in unequal gaps between oxygen atoms along the b-axis, as
seen in Fig. 6.

With this in mind, Fig. 8 shows possible configurations
of ligand O1 from Fig. 7, with a fixed value of �d , interacting
with neighboring ligand O01. These twenty possible pairwise
ligand configurations avoid significant van der Waals overlaps
of deuterons on adjacent water ligands. In each column are the

FIG. 8. Possible correlated ligand geometries of adjacent water molecules in pyramidal coordination in the NiCl2 ·2D2O structure. The blue dashed lines
represent hydrogen-bond interactions. The possibilities are divided into three subsets with different site occupancies. The black dotted line represents the edge
of the unit cell. The ligands O1 and O01 are related by a translation of one unit cell, followed by a reflection operation.
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four bisector flipping exchange-equivalent configurations. The
observation that only one site is needed to model the NMR
spectrum suggests that we focus on combinations of columns
that lead to the same motional average tensors for both O1
and O01. Careful inspection of Fig. 8 reveals that only equally
weighted exchange between the configurations of the first and
second columns or between the configurations of the third and
fourth columns leads to the same motional average tensors for
both O1 and O01. Thus, we further divide the configurations
into three subsets, which are corralled in Fig. 8 along with
the corresponding site occupancies for each subset. The sin-
gle column of subset C, on its own, can be dismissed outright
as it leads to a motional averaged value of |h⇣qi/⇣q | ⇡ 0.5
which is inconsistent with the experiment. All the remaining
ways in which the three subsets can be combined with equal
weights are given in Table III. Taking the water bond angle
as equal to the tetrahedral angle, we can screen the feasibil-
ity of each subset combination by comparing their predicted
values of ��h⇣qi/⇣q�� and h⌘qi with experiment. We see that the
equal contribution subset A+B, while reasonable in its predic-
tion of ��h⇣qi/⇣q��, predicts a h⌘qi far below the experiment and
can be eliminated. Similarly, equal contribution subsets A+C
and B+C predict reasonable values of h⌘qi but are too large in
their prediction of ��h⇣qi/⇣q�� and can also be eliminated. Finally,
equal contribution subset A+B+C is closer in its prediction of��h⇣qi/⇣q�� but too small in its prediction of h⌘qi and is thus elim-
inated. Hence, we find that subsets A or B are consistent with
the experimental values of ��h⇣qi/⇣q�� and h⌘qi. A more thorough
screening of models, which considers weighted admixtures of
subsets and leverages predictions of full correlation spectra
for each case, is given in the supplementary material. This
analysis validates the conclusions drawn from Table III, and
henceforth, we focus exclusively on the motional model of
subsets A or B.

A common characteristic of subsets A and B is that one
deuteron site is always occupied. In Fig. 8, the permanently
occupied site is labeled � in subset A and ↵ in subset B. To
model this motion, we refer to Fig. 7 and only consider the
top four configurations; that is, we ignore the bottom row. In
doing this, we establish the convention that site “2” always
represents the permanently occupied site (p2 = 0.5), and �d
becomes the fit parameter for determining the orientation of
the permanently occupied site in the lattice-fixed frame. To

TABLE III. Ordered lists of occupancy parameters for equally weighted com-
binations of the configuration subsets shown in Fig. 8. Predicted values of���h⇣qi/⇣q

��� and h⌘qi are given assuming that 2✓w is the tetrahedral angle,

109.47�. The uncertainty in ���h⇣qi/⇣q
��� arises from an assumed ±6 kHz normal

uncertainty in the instantaneous Cq value of 230 kHz.

Subsets (p↵ , p� , p� ) ���h⇣qi/⇣q
��� h⌘qi

A (0.25, 0.25, 0.5) 0.354 1
B (0.5, 0.25, 0.25) 0.354 1
A+B (0.375, 0.25, 0.375) 0.341 0.464
A+C (0.333, 0.167, 0.5) 0.373 1
B+C (0.5, 0.167, 0.333) 0.373 1
A+B+C (0.4, 0.2, 0.4) 0.356 0.685

Experimental 0.33 ± 0.03 0.91+0.04
�0.01

calculate the average efg tensor for this model, it is convenient
to begin in a frame tilted away from the lattice-fixed frame by
a rotation of �d about the y axis of the lattice-fixed frame. In
this tilted frame, the nonzero Cartesian components of the efg
tensor are given by

hA{q }xx i =
⇣q

8
(1 � 5 cos 2✓w), (44)

hA{q }yy i = ⇣q cos 2✓w , (45)

hA{q }zz i = �
⇣q

8
(3 cos 2✓w + 1), (46)

hA{q }xy i = hA{q }yx i =
3⇣q

4
sin ✓w

"
1 � 4

3
sin2 ✓w

#1/2

. (47)

This block diagonal hA{q}i tensor can be diagonalized and
brought into its PAS by the passive rotation,

h⇢ {q }i =W
�1hA{q }iW, (48)

where W consists of two successive coordinate system rota-
tions according to

W = Dz0( )Dx00

✓ ⇡
2

◆
. (49)

Here a rotation about the z0-axis of the tilted lattice frame
diagonalizes hA{q}i and is followed by a rotation about the
intermediate diagonal frame x00-axis, which brings the tensor
into its PAS. The angle  is given by

 = ⇡ � 1
2

cos�1
 

26 cos 2✓w � 2
3u(✓w)

!
, (50)

where

u(✓w) =
p

2[19 � 4 cos 2✓w + 17 cos 4✓w]1/2 (51)

so that 100� .  . 125� for 90�  2✓w . 109.47�. In this
range,

h⇣qi =
2 + 6 cos 2✓w + 3u(✓w)

32
, (52)

h⌘qi =
3u(✓w) � 18 cos 2✓w � 6
3u(✓w) + 6 cos 2✓w + 2

. (53)

When 2✓w is the tetrahedral angle, ⇠109.47�, we obtain
h⇣qi = ⇣q/

p
8 and h⌘qi = 1.

We calculate the paramagnetic shift tensor in the lattice-
fixed frame, hR{P}i, where the separation vectors for the three
deuteron sites as defined above are given by

1,k = rk �Dy

 
�d �

2⇡
3

!
r,

2,k = rk �Dy(�d)r,

3,k = rk �Dy

 
�d +

2⇡
3

!
r,

(54)

where r = rODr̆ and rk represents the coordinates of the kth
dipole source. Through the passive transformation

hQ{P }i =W
�1
D
�1
y (�d)hR {P }iDy(�d)W, (55)

we obtain hQ{P}i, giving the components of the motional aver-
aged paramagnetic shift tensor in the PAS of the motional
averaged efg tensor. As before, the relative orientation of the

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
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efg and shift tensors is determined by a numerical diago-
nalization of the shift tensor and is defined as the passive
transformation which takes the PAS of the paramagnetic shift
tensor into that of the efg.

IV. RESULTS AND DISCUSSION
A. Comprehensive analysis of 2D spectra

We are now in a position to combine the results of Sec. III
into a single comprehensive model for the 2D shifting-d NMR
spectrum. This comprehensive model requires (1) the heavy
atom crystal structure, (2) the molecular magnetic suscep-
tibility of the paramagnetic metal centers, (3) the extent of
magnetic point dipole delocalization away from metal centers
onto coordinating ligands, (4) the coordination type and cor-
responding motional model for the water ligand, and (5) the
geometric details on the water ligand: rOD, ✓w , and �d . Of
course, the adjustable parameters associated with all require-
ments taken together is an inordinate number of degrees
of freedom for any experimental line shape analysis. Addi-
tional constraints need to be imposed. Therefore, our analy-
sis assumes the use of known heavy atom crystal structures
and the molecular magnetic susceptibilities predicted using
bulk magnetic susceptibility or other spectroscopic measure-
ments. Additionally, we chose to fix the values of rOD and ✓w
based on the more reliable neutron diffraction90 results from
CoCl2·2D2O at 77 K. As suggested by these data, we also
hold �d ⇡ 55� fixed to enforce D2O/Cl planarity for the trigo-
nal systems (M = Mn, Fe, Co, and Cu), as illustrated in Fig. 5.
A comparison of ligand geometries obtained from diffraction
on FeCl2·2D2O, CoCl2·2D2O, and CuCl2·2D2O is given in
Table S-IX of the supplementary material. Note that this is
in spite of the motional model predictions from experimental��h⇣qi/⇣q�� and h⌘qi giving 2✓w values that are 4�-6� larger for
all salts—with the exception of CuCl2·2D2O—as shown in
Table S-X of the supplementary material. Thus, the values of
rOD = 0.98 Å and 2✓w = 103.0� are used for all salts analyzed
here except CuCl2·2D2O, where Engberg’s x-ray and neutron
data refinement values of rOD = 0.948 Å and 2✓w = 111.4� are
used.83,89

1. CuCl2·2D2O

Here we examine the performance of our comprehen-
sive model using various point dipole configurations with
increasing delocalization to predict the shifting-d spectrum for
CuCl2·2D2O. In Fig. 2(a) is the fit of the experimental spectrum
allowing the tensor parameters to vary freely, that is, without
constraints of the comprehensive model, along with the result-
ing residuals spectrum associated with the best-fit �2

red value
of 22.80. In the first column of Fig. 9 is the best fit of the exper-
imental spectrum using a comprehensive model with trigonal
coordination/motion and a point dipole configuration where
sources are placed only at Cu centers. The disagreement with
the experiment, as highlighted by the residuals below and a
�2

red value rising to 144.2, is striking. In previous work,29 it
was shown that a comprehensive model for the CuCl2·2D2O
spectrum can be systematically improved by placing dipoles
in regions where the spin density is expected to delocalize.

FIG. 9. On the top row is a comparison of the best fit shifting-d spectrum
predicted with various point dipole configurations for CuCl2 ·2D2O. On the
bottom row are the residual plots calculated with the experimental spectra.
The quadrupolar parameters hCqi and h⌘qi were taken from the best fit of the
experimental data. The line shape was refit to optimize the intensity, isotropic
shift, and degree of line broadening for the paramagnetic shift dimension for
each fixed set of calculated paramagnetic shift tensor parameters.

The optimum delocalization was determined by a least squares
fit that minimizes error in the nontrivial molecular frame spher-
ical components hR{P }2,0 i and hR{P }2,�2i relative to the experimen-
tally derived components. Delocalization of point dipoles onto
the two chlorines associated with the shortest Cu–Cl bond,27

as shown in the second column, gives a marked improvement
with �2

red dropping by a factor of two, down to 58.73. Still bet-
ter improvement is obtained with added delocalization onto
the oxygen of the water ligands, as seen in the third column,
with �2

red dropping to 27.1. The best agreement, however, is
obtained with oxygen delocalization and the chlorine sources
pushed 0.9 Å away from the metal along the direction of the
shortest Cu–Cl bond, in imitation of the antibonding character
of the singly occupied molecular orbital (Cu+Cl⇤S+O model).
This is seen in the final column where �2

red approaches a value
nearly identical to the fit in Fig. 2(a) where the shift tensor
parameters were allowed to vary freely. Any further attempts to
improve the point dipole configuration, such as the previously
described SOMO-10 model,29 would only lead to changes
within the error and noise of the line shape model and were not
pursued.

2. Isostructural salts: CoCl2·2D2O, FeCl2·2D2O,

and MnCl2·2D2O

In the case of the isostructural salts with M = Co, Fe, and
Mn, the use of a comprehensive model with point dipoles posi-
tioned only on metal centers, corresponding to the source con-
figuration of Fig. 10(a), gives considerably better agreement
with the experimental line shapes, as shown in the first columns
of Figs. 11(a)–11(c), when compared to the first column of
Fig. 9 in the CuCl2·2D2O case. Physically, this is consistent
with the periodic trend predicting that the bonding between
the ligands and metal cation takes on increasingly ionic

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
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FIG. 10. Configuration of point dipole sources located at (a) metal nuclei,
(b) metal and chlorine nuclei, and (c) metal centers and chlorine �⇤-type
antibonding orbital configuration with respect to the primary MCl2 polymeric
chain. From this vantage point, the crystal frame b-axis is perpendicular to the
page. The amplitude of the metal sources becomes f M = 1 � 2f Cl for cases
(b) and (c). When delocalization to oxygen atoms is included, f M = 1 � 2f Cl
� 2f O.

character along the iron group82 moving from Cu2+ to Mn2+.
Nevertheless, some degree of covalency is present, leading to
detectable effects in EPR and 57Fe Mössbauer spectra.91

The good agreement of the comprehensive model with
point dipoles placed only at metal sites validates our use of
molecular susceptibility tensors calculated with the crystal
field approach. Not only the magnitude but also the suscep-
tibility tensor orientation plays a critical role in determining
the shift tensor. For example, in the case of CoCl2·2D2O,
rotating the susceptibility tensor by ⇡/2 about its principal
y-axis leads to the predicted values of h⇣Pi = �802 ppm and
h⌘Pi = 0.958, in stark contrast with the experiment.

We explore other dipole source delocalization configura-
tions illustrated in Fig. 10 where delocalization parameters are
optimized as described in the Cu case. In all three cases, we find
only modest but consistent improvement from delocalization
onto chlorine nuclei, corresponding to the source configura-
tion of Fig. 10(b), and visualized in the second columns of
Figs. 11(a)–11(c). The extent of delocalization required is
significantly smaller in comparison to the values f Cl > 10%
required to obtain good agreement in the Cu case. This is
consistent with our interpretation of greater ionic character
to the bonding interactions in the earlier members of the iron
group.

Further refinements of the source configurations do
not lead to consistent improvement. The anti-bonding chlo-
rine configuration of Fig. 10(c) does lead to improvement
for FeCl2·2D2O [fCl⇤ = 6.5%, �2

red = 10.28, not shown in
Fig. 11(b)] and MnCl2·2D2O [Fig. 11(c)] when compared to
the metal-only source model, although the gain is meager for
the latter case. For CoCl2·2D2O, �2

red is raised for any fCl⇤ > 0.
Whereas delocalization onto oxygen was crucial for obtaining
the experimental negative value of h⇣Pi for CuCl2·2D2O, sup-
plementing the configurations of Figs. 10(a) and 10(b) with
sources at oxygen exacerbates agreement for CoCl2·2D2O
and MnCl2·2D2O. Starting from the best performing con-
figurations corresponding to those illustrated in Fig. 11(a),
introducing a mere f O = 0.2% raises �2

red by 0.59 and 0.66
for the first and second columns, respectively. Likewise, �2

red
goes up by 0.06, 0.60, and 0.23 when starting from the config-
urations illustrated by the first, second, and third columns of
Fig. 11(c), respectively. For FeCl2·2D2O, the effect of delocal-
ization onto oxygen is mixed. Starting from the configuration
illustrated in the second column of Fig. 11(b), introducing
f O = 0.2% raises �2

red by 0.19. The value of �2
red drops by

0.04 for the configuration corresponding to the first column,
but when raised above f O = 0.4%, this meager improve-
ment is already lost. The anti-bonding chlorine configuration,

FIG. 11. Simulated correlation spectra and residual plots of (a) CoCl2 ·2D2O, (b) FeCl2 ·2D2O, and (c) MnCl2 ·2D2O comparing different point dipole con-
figurations. In (b), the last column is the �⇤-type antibonding chlorine model of Fig. 10(c) supplemented by oxygen sources; without the oxygen sources, the
configuration of Fig. 10(c) gives �2

red = 10.28 at fCl⇤ = 6.5%. The quadupolar parameters hCqi and h⌘qiwere taken from the best fit of the experimental data. The
line shape was refit to optimize the intensity, isotropic shift, and degree of line broadening for the paramagnetic shift dimension for each fixed set of calculated
paramagnetic shift tensor parameters.
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TABLE IV. Predicted instantaneous paramagnetic shift tensor parameters, corresponding to PD calculated using Eq. (12), for the comprehensive models deemed
most reasonable in the main text. Euler angles correspond to rotation of the PAS into the lattice-fixed frame. The dihedral angle �d was set to 152.7� for the Ni
calculation.

Instantaneous 2H shift tensor

Compound Dipole locations f Cl (%) f O (%) Site ⇣P (ppm) ⌘P ↵P (deg) �P (deg) �P (deg)

CuCl2 ·2D2O Cu+Cl⇤S+O 14.7 2.1 1 259 0.145 43.9 61.3 111.8
2 259 0.145 43.9 61.3 111.8

NiCl2 ·2D2O Ni+Cl 15.0 0 1 639 0.268 172.0 73.6 91.0
2 683 0.040 138.5 108.1 78.1
3 605 0.079 143.8 58.9 88.3

CoCl2 ·2D2O Co+Cl 3.9 0 1 1780 0.134 38.5 65.6 93.2
2 1780 0.134 38.5 65.6 93.2

FeCl2 ·2D2O Fe+Cl 4.1 0 1 1762 0.313 121.4 61.6 95.5
2 1762 0.313 121.4 61.6 95.5

MnCl2 ·2D2O Mn+Cl 6.6 0 1 1828 0.134 109.1 62.3 95.1
2 1828 0.134 109.1 62.3 95.1

on the other hand, benefits significantly from delocalization
onto oxygen, with �2

red dropping from 10.28 to 9.53; the lat-
ter value and delocalization parameters are reported in the
third column of Fig. 11(b). Despite these minor improvements
occasionally found with further delocalization, we opt for
consistency and conclude that the simpler point dipole con-
figuration featuring nuclei-centered chlorine delocalization,
shown in Fig. 10(b), provides the simplest and most reasonable
approximation across the isostructural salts.

In Table IV, we list the paramagnetic shift tensor param-
eters calculated according to the source configuration of
Fig. 10(b) at the optimal value of f Cl for each case. The
strength of the anisotropy for CoCl2·2D2O, FeCl2·2D2O, and
MnCl2·2D2O in the absence of bisector flipping is predicted
to be relatively constant, with the instantaneous ⇣P varying
no more than 40 ppm from 1800 ppm. This is remarkable
in light of the Curie law, which might lead one to expect
⇣P(Co) < ⇣P(Fe) < ⇣P(Mn) roughly in proportion to S(S + 1),
as visualized in Fig. 3. In Table V, we list the paramagnetic
shift tensor parameters after the motional average. The pre-
dicted anisotropy remains roughly constant when accounting
for bisector flipping, falling within the range 1250± 100 ppm
consistent with the experimental values. As a result of the
motion, we predict that CoCl2·2D2O overtakes MnCl2·2D2O

as the compound with the largest tensor anisotropy, with
h⇣Pi(Fe) < h⇣Pi(Mn) < h⇣Pi(Co). This is the trend exhib-
ited by our experimental results. These calculations also cor-
rectly predict that the asymmetry parameter h⌘Pi is largest for
FeCl2·2D2O and capture the h�reli = h�reli = ⇡

2 constraints
implemented in the experimental tensor analysis.

The differences in �2
red between the experimental best

fit and the comprehensive model of the line shape remain
large enough to warrant consideration of other factors which
influence the calculation, especially for FeCl2·2D2O and
MnCl2·2D2O. This disagreement is primarily driven by a per-
sistent overestimation of h⌘Pi by⇠0.2–0.4 and an insubstantial
reduction of this parameter by the delocalized point dipole
models. One factor may be an overly constrained water ligand
geometry and orientation, which also plays an important role
in the shift tensor calculation. Shrinking the O–D bond length
and opening the water angle does lower h⌘Pi but requires rather
extreme distortions of the water ligand to obtain good agree-
ment with the experimental h⌘Pi. In the “Mn+Cl” source model
at f Cl = 5%, for example, reducing rOD to 0.8 Å and opening
2✓w to 120� decrease h⌘Pi to 0.29 but also leads to an unrea-
sonable increase of h⇣Pi to 1768 ppm. Another factor could be
the constraint on the dihedral angle. For MnCl2·2D2O, h⌘Pi
can be reduced by decreasing �d alone. By simply subtracting

TABLE V. Predicted motional averaged paramagnetic shift tensor parameters, corresponding to the observable
hPDi, for the comprehensive models deemed most reasonable in the main text. The pseudo-contact shift is given
by PD

iso. Euler angles correspond to rotation of the PAS into the PAS of the efg tensor. The dihedral angle �d was
set to 152.7� for the Ni calculation.

Compound PD
iso (ppm) h⇣Pi (ppm) h⌘Pi h↵reli (deg) h�reli (deg) h�reli (deg)

CuCl2 ·2D2O 12 148 0.816 90 88.8 0
NiCl2 ·2D2O 0 531 0.108 32.7 111.6 174.5
CoCl2 ·2D2O 274 1320 0.392 164.4 90 90
FeCl2 ·2D2O 82 1150 0.705 136.9 90 90
MnCl2 ·2D2O 0 1233 0.601 147.1 90 90
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20� from our initial �d , �2
red is reduced by 1-2 for each of the

point dipole configuration predictions in Fig. 11(c). A similar
reduction of �2

red is obtained for the configurations presented
for FeCl2·2D2O when this change is implemented as well,
but, interestingly, such an adjustment for Co raises the �2

red
for CoCl2·2D2O by ⇠1. On the basis of electrostatic model-
ing of hydrogen bonds by Baur,92 El Saffar calculated proton
positions in MnCl2·2H2O93 and determined that �d does devi-
ate from coplanarity by 20�, but in the opposite direction we
require for improving the agreement with our experimental
data. In contrast, adding 20� to our initial �d leads to a consis-
tent increase in �2

red in all the isostructural salts. It is curious
that any substantial deviation in �d from the value enforcing
D2O/Cl planarity worsens the agreement of our predictions for
CoCl2·2D2O considering we have established the assumption
of coplanarity on the basis of CoCl2·2D2O neutron diffrac-
tion data;90 however, since neutron diffraction data at liquid
helium temperature for FeCl2·2H2O also show coplanarity of
the chlorine atoms and heavy water ligand,86 these alternative
configurations are only justified if �d is temperature depen-
dent. Finally, we show in the supplementary material that
accounting for additional averaging by torsional motion leads
to a consistent reduction of h⌘Pi by about 0.05, a change which
is of the right sign but is too small to account for the observed
differences.

3. NiCl2·2D2O

As can be seen in Fig. 2, the 2D line shape of the shifting-d
spectrum of NiCl2·2H2O is distinctly different from the other

iron group chloride dihydrates. As shown in Sec. III D, the
experimental hCqi and h⌘qi values for NiCl2·2D2O, given in
Table I, rule out the motional model with trigonal coordi-
nation and bisector flipping, which was successful in mod-
eling the shifting-d spectra of the other iron group chloride
dihydrates.

As mentioned earlier, a key structural difference between
NiCl2·2H2O and the other iron group chloride dihydrates is the
corrugation of the NiCl2 chains, which leads to unequal gaps
between oxygen atoms along the b-axis. This, in turn, increases
the extent of intermolecular hydrogen and oxygen interactions,
forcing the water ligands into pyramidal coordination with
restricted motion. These interactions and the constraints of the
experimental hCqi and h⌘qi values suggest a motion where
the pyramidally coordinated water ligand undergoes bisector
flipping while hopping between two equally probable config-
urations related by a 2⇡/3 rotation, as illustrated by the subset
A or B in Fig. 8. In this restricted motion, one of the three
deuterium sites is permanently occupied. A critical adjustable
parameter in this model is a rotation about the Ni–O bond
axis by the dihedral angle �d which specifies the orientation
of the permanently occupied site with respect to the crystal
lattice.

The best-fit line shapes using a comprehensive model
of pyramidal coordination following the motion described in
Sec. III D 2 as a function of �d are shown in Fig. 12. Here,
the same goodness of fit analysis used to study the effects of
delocalization for the isostructural cases is used to examine
which values of �d offer the best agreement with the observed
spectrum. Good agreement is found within a large range from

FIG. 12. Agreement of predicted
quadrupolar/paramagnetic shift cor-
relation spectra for the motion of
pyramidally coordinated water ligands
between two equally likely configu-
rations, described in Sec. III D 2, as
a function of the dihedral angle for
different values of f Cl delocalizing
dipole sources to chlorine nuclei.
The experimental best fit �2

red value
(1.46, dashed line) is approached when
f Cl = 15%. A visual measure of
agreement for selected �d values is
shown by plotting calculated spectra
with experimental residuals.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
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approximately �d = 60� to �d = 150�, becoming best when
a moderate degree of delocalization to chlorine atoms, with
f Cl = 15%, is made. Not all values of �d within this range,
however, are equally reasonable from a crystallographic stand-
point. Selecting �d = 60�, for instance, leads to a crystal
structure where the permanently occupied sites of water lig-
ands on neighboring chains are separated by just 1.29 Å,
creating instances of severe van der Waals overlap. This near-
est neighbor separation does increase with increasing �d , but
only when �d reaches the upper extreme of the agreement
basin does the minimum separation of permanently occupied
deuterium sites reach a physically tenable value of 2 Å near
�d = 150�. For the water ligand geometry used in our cal-
culation (rOD = 0.98 Å, 2✓w = 103�), the value �d = 152.7�

distinguishes itself as the orientation for which the O–D bond
of the permanently occupied deuterium site is directed toward
a chloride anion 2.60 Å away. In this configuration, the near-
est neighbor separation of the permanently occupied deuteron
sites is 2.02 Å. A similar situation occurs in SnCl2·2H2O,94

where a hydrogen position of permanent occupancy is oriented
toward a chloride anion.

Based on X-ray diffraction data, Morosin82 speculated
that the water ligand engages in weak bifurcated and trifurcated
hydrogen bonds with its neighbors. It is interesting that he
proposed hydrogen positions that nearly coincide with the two
sites with 50% occupancy in the concerted motion of our pyra-
midal coordination model. Although Morosin did not mention
ligand dynamics nor fractional occupancies, the simultaneous
occupancy of these two positions would not be feasible due
to van der Waals overlap of hydrogen atoms on neighboring
ligands.

Of all the comprehensive model fits of iron group chlo-
ride dihydrates shifting-d spectra, this particular model gives
the lowest �2

red values and are remarkably close to the fit
in Fig. 2(b). The low uncertainty determined by our analy-
sis of the experimental spectrum—refer to histograms of the
marginal parameter distributions in the supplementary mate-
rial—is a reflection of how sensitively the distinctiveness of the
correlation pattern responds to changes of h�Pi. Even more so
than the other cases, this particular analysis nicely illustrates
the power of the 2D NMR experiment and the comprehensive
2D line shape model as a method for determining the num-
ber, location, and occupancies of crystallographically distinct
hydrogen sites.

B. Other considerations
1. Contact anisotropy

Until this point in the discussion, we have completely
neglected the contact contribution to the paramagnetic shift
tensor, PC , under the assumption that the spin density at the
deuteron is approximately zero. This is certainly a simplifica-
tion in light of the fact that predicted pseudo-contact shifts PD

iso
disagree markedly with the observed isotropic shifts given in
Table I. The anisotropic component of P is, however, influ-
enced by PC to a much lesser degree than the isotropic com-
ponent, as PC is simply proportional to �(S), which itself is
approximately proportional to g (Appendix B). On this basis,
we can estimate the anisotropy of PC to be

⇣PC ⇡ PC
iso

gzz � giso

giso
,

where giso = Tr{g}/3. This value can be taken as an esti-
mate of the maximum extent to which the anisotropy of P can
be affected by the contact contribution. For MnCl2·2D2O and
NiCl2·2D2O, where �(S) = � is wholly isotropic, there is no
contact contribution whatsoever to the anisotropy. To estimate
this contribution for the other compounds, we first strip away
an initial contribution to the measured isotropic shift using the
predicted PD

iso, leaving us with

PC
iso(Co) = �60 ppm,

PC
iso(Fe) = 183 ppm.

For FeCl2·2D2O, this leads to |⇣PC | = 14 ppm. While we
have not expressed a well-defined g for CoCl2·2D2O, crudely
taking gzz = 3, giso = 2.5 leads to the same magnitude of con-
tact anisotropy. Since |⇣PD | > 1400 ppm, we conclude that
contact anisotropy affects our results below the 1% level of
accuracy. This represents a range of error that is even smaller
than the 95% confidence intervals given in Table I, justifying
our neglect of contact anisotropy.

2. Bulk susceptibility e�ects

Macroscopic fields could also cause parameter bias. In
a spherical Lorentz cavity large enough to render the dis-
tinction between continuous and discrete dipole densities
negligible, the magnetic field at the nucleus can be written
as

B = B0 + Bshape + Bcontainer + Bdipolar + Bmicro. (56)

Here, the molecular information of interest is encoded in the
microscopic field represented by the final term, Bmicro, which
corresponds to BP in Eqs. (9) and (11). The field Bdipolar result-
ing from the dipolar fields due to the macroscopic magnetic
moment of each crystallite primarily manifests as a broad-
ening along the paramagnetic shift dimension as long as the
crystallites are randomly oriented.95,96 The value of Bcontainer
arises from a discontinuity of the magnetization at the sam-
ple boundary and we take it to be negligible on account of
the loose packing of crystallites in our sample. Demagnetiz-
ing fields resulting from nonspherical crystallites, as encoded
by the field Bshape, could in fact lead us to measure a sys-
tematic deviation from the predicted tensor anisotropy, as
these fields are modulated by the orientation of the crystal-
lite with respect to the external magnetic field. Therefore,
they are also correlated with the paramagnetic shift anisotropy.
The tendency of the compounds studied here is to crystallize
in the form of long, thin needles, which could lead to sub-
stantial corrections. To counteract this effect, care was taken
to grind the samples finely in an attempt to create approx-
imately spherical crystallites, rendering the demagnetizing
fields negligible.97 Although the particle shape distribution
is admittedly difficult to control, we do not believe that this
explains the residual discrepancy in h⌘Pi for the isostructural
cases.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
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3. Electronic structure considerations

We might also concern ourselves with the accuracy of our
molecular susceptibility calculations, which are reliant on sim-
plistic (and arguably archaic) crystal field methods. We recall
that, in spite of the multifarious crystal field developments
implemented in calculating � for each ion—involving even
extrapolation, in the case of CoCl2·2D2O—the predictions
which these susceptibilities underlie deviate in a systematic
fashion from the values analyzed experimentally, to wit, the
overestimation of h⌘Pi. This suggests a structural origin to the
discrepancy. There is little doubt that crystal field methods,
calibrated and supported by information from other analytic
methods, provide a sound way to determine accurate molec-
ular susceptibility tensors. This robustness can prove useful
when g- and A-tensor data from EPR, which usually provides
the most straightforward means for calculating of paramag-
netic shifts,9,38,98 are difficult to obtain. Indeed, point dipole
calculations in Lorentz cavities, calibrated solely by magne-
tization measurements, have been used since the 1960s to
analyze the magnetic properties of materials—most notewor-
thy is the work by Albert Narath, also on the iron group chloride
dihydrates.28,64

All factors considered, the slight discrepancy in h⌘Pi for
the isostructural series defies satisfactory explanation, and we
leave this as a challenge for modern computational methods
for paramagnetic shift tensor prediction. A general formalism,
first introduced by Moon and Patchkovskii98 expressing the
NMR paramagnetic shift tensor in terms of the EPR g- and A-
tensors, has recently been expanded in scope by Vaara, Soncini,
and others99–101 to encompass spin-orbit dequenched sys-
tems experiencing zero field splittings such as those we have
studied here. Accurate prediction of the shifting-d spectra of
the iron group chloride dihydrates, particularly NiCl2·2D2O,
might serve as a suitable challenge for modern computational
methods in NMR crystallography.24,25,102–104

V. SUMMARY

Two-dimensional NMR measurements have been per-
formed on the MCl2·2D2O family of compounds, with
M = Cu, Ni, Co, Fe, and Mn, using the shifting-d echo exper-
iment to correlate the 2H quadrupolar and paramagnetic shift
interactions. The specific focus of this work is the design
of a comprehensive NMR approach to determine the degree
of positional and motional disorder of the hydrogen sites
around oxygen in the water ligands of these hydrate salts,
and, when possible, determine the number and location of
crystallographically distinct hydrogen sites and their fractional
occupancies.

The experimental 2D NMR spectra were analyzed for the
principal components of the first-order quadrupole coupling
and paramagnetic shift tensors along with their relative orien-
tation. A chi-scaled Markov chain Monte Carlo method, aided
by an efficient 2D frequency tenting algorithm, was used to
explore the NMR parameter space and deliver estimations of
the 95% confidence regions for the tensor parameters.

Starting from Van Vleck’s generalized susceptibility
equation, expressions for obtaining the molecular suscepti-
bility tensor � for the iron group cations were determined

utilizing the concept of the orbital angular momentum
dequenching tensor ⇤ in the context of crystal field theory.
Aside from Mn2+, the octahedrally coordinated cations of
the divalent iron group in these complexes exhibit marked
deviations from Curie law behavior.

On the basis of the experimental quadrupolar coupling
parameters, a motional model with trigonal water ligand coor-
dination and bisector flipping is proposed for the M = Cu,
Co, Fe, and Mn salts. In the case of the Ni salt, we propose
a model with pyramidal water ligand coordination and ligand
hopping by 120� rotations about the Ni–O bond axis between
two equally probable orientations in conjunction with bisector
flipping.

Using the heavy atom crystal structure, appropriate
motional models, and predicted susceptibility tensors, the per-
formance of various point dipole source configurations for
predicting the experimental 2D shifting-d echo NMR spectrum
is evaluated. Given the approximations involved, the metal-
only point dipole configuration for M = Ni, Co, Fe, and Mn salts
performs well in its prediction of the experimental 2D spectra.
This underscores the importance of an accurate determination
of �. In all cases, further delocalization of point dipoles on the
chlorine ligands gives moderate improvement. By contrast,
the metal-only point dipole configuration performs poorly
in predicting the CuCl2·2D2O spectrum. Following previ-
ous work,27 delocalization onto oxygen leads to an improved
prediction.

Overall, we have shown that the shifting d-echo exper-
iment and the analysis of its 2D spectrum can be a use-
ful probe of structure and dynamics. This is particularly
well illustrated in our determination of pyramidal water lig-
and coordination in NiCl2·2D2O, as well as describing its
restricted motion, and the absolute orientation of the perma-
nently occupied deuterium site. An overestimation of h⌘Pi,
however, persists across our predictions for the M = Co, Fe,
and Mn isostructural family. Given the precision of our mea-
surements, such discrepancies lead us to challenge modern
computational methods to accurately predict the instantaneous
and motional averaged paramagnetic shift tensors, includ-
ing principal component values and orientation, for these
substances.

SUPPLEMENTARY MATERIAL

See supplementary material for additional details on sam-
ple preparation, NMR acquisition parameters, the low temper-
ature shifting-d echo spectrum of NiCl2·2D2O, the crystal field
energy level diagrams, a breakdown of the molecular suscep-
tibility into its constituent parts according to the three terms
of Eq. (18), survey of motional models for pyramidal coordi-
nation in NiCl2·2D2O, an estimation of the effects of torsional
motion, the marginal parameter distributions obtained in the
analysis of all experimental shifting-d echo spectra, and an
overview of structural parameters relevant to this study. Raw
and processed NMR data are provided for each of the shifting-d
echo experiments. We also provide the Mathematica .nb files
used for the point dipole calculations and a .cif file including
hydrogen coordinates and fractional occupancies according to
our NMR refined structure of NiCl2·2D2O.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-004832
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APPENDIX A: DERIVATION OF THE DEQUENCHED
MOLECULAR SUSCEPTIBILITY

Orbitally quenched magnetism occurs when the electro-
static Hamiltonian Ĥ0 contains no terms which couple the
electron orbital and spin degrees of freedom. In this limit, we

have

Ĥ0, Ŝ

2
�
=

f
Ĥ0, Ŝz

g
= 0 and label eigenstates of Ĥ0 as

|↵mi = |↵i ⌦ |mi, where |↵i and |mi are the electronic state and
magnetic quantum number of the total spin, respectively. We
also assume that the ground electronic states |0mi possess no
orbital degeneracy51 so that the first order contribution to the
orbital moment vanishes, h0|L̂|0i = 0. Here, it is understood
that L̂ operates solely on the ↵ component of the eigenstates
and so the |mi component is omitted.

As described, Ĥ0 is a good zeroth-order description for
the electronic configuration of the iron group elements, and
so we adopt the complete unperturbed eigenstates |↵mi as the
working basis. Dequenching occurs when a spin-orbit coupling
is introduced as a perturbation to Ĥ0. When the LS-coupling
scheme holds, we take

Ĥ1 =
�so

~2
L̂ · Ŝ, (A1)

and, following Griffith,53 the first order correction | (1)mi
to the relevant set of ground state wave functions
| mi = |0mi + | (1)mi can be written in the following way:

| (1)mi = �so

~2

X

↵>0

h↵ |L̂|0i
E0 � E↵

· Ŝ|↵mi. (A2)

Equation (A2) expresses the perturbed wave functions in terms
of matrix elements of L̂ connecting electronic states, which

are just numbers, but overtly retains the action of Ŝ on the
spin space kets. In this way, it serves as the foundation for
defining equivalent operators for Ĥ1 and µ̂ which act only
on the truncated subspace of ground electronic state spin
kets. For instance, the second order correction to the energy,
E(2)

m = h0m|Ĥ1 | (1)mi, is given by

E(2)
m =

�2
so

~4

X

i

X

j

X

↵>0

hm|Ŝi
h0|L̂i |↵ih↵ |L̂j |0i

E0 � E↵
Ŝj |mi. (A3)

By introducing the symmetric negative semi-definite orbital
angular momentum dequenching tensor ⇤, with compo-
nents47,53,54

⇤ij =
1
~2

X

↵>0

h0|L̂i |↵ih↵ |L̂j |0i
E0 � E↵

, (A4)

Eq, (A3) becomes equivalent to

E(2)
m = hm|Ŝ ·

⇣
�2

so⇤/~
2
⌘
· Ŝ|mi (A5)

from which we derive the form of the “zero-field splitting”
Hamiltonian in the truncated subspace,

HZFS =
1
~2

Ŝ · D� · Ŝ, (A6)

where the zero-field splitting tensor D� = �2
so⇤ has units of

energy.
We develop expressions related to magnetism using the

ground state wave functions, corrected by perturbation the-
ory. The matrix elements of the electronic magnetic moment
operator µ̂ = �µB

⇣
L̂ + geŜ

⌘
/~, within degenerate zeroth-order

spin states of the ground electronic manifold, are given by
h m| µ̂ | m0i, which can be decomposed into

h m| µ̂i | m0i = � µB

~

⇣
h0|L̂i |0ihm|m0i + geh0|0ihm|Ŝi |m0i

⌘

� µB�so

~3
*
,
X

↵>0

X

k

h0|L̂i |↵ih↵ |L̂k |0i
E0 � E↵

hm|Ŝk |m0i + ge

X

↵>0

h0|↵i
X

k

h↵ |L̂k |0i
E0 � E↵

hm|Ŝk |m0i+-
� µB�so

~3
*
,
X

↵>0

X

k

h0|L̂k |↵ih↵ |L̂i |0i
E0 � E↵

hm|Ŝk |m0i + ge

X

↵>0

h↵ |0i
X

k

h0|L̂k |↵i
E0 � E↵

hm|Ŝk |m0i+-
� µB

~
h (1)m|L̂i + geŜi | (1)mi.

The final term, between the correction states | (1)mi, is of order
(E0 � E↵)�2 and can be neglected under the assumption that
|�so| ⌧ E↵ � E0; that is, the spin-orbit coupling is a weak
perturbation onto the electrostatic Hamiltonian. Among the
terms of order (E0 � E↵)�1, those which involve ge are zero by
the orthonormality of the electronic eigenstates. Finally, with
our assumed condition that the first order contribution to the
orbital angular momentum is quenched, h0|L̂|0i = 0, we are

left with

h m| µ̂i | m0i = hm| � µB

~

X

k

gikŜk |m0i, (A7)

where the symmetric g-tensor components, gik , are given by
Eq. (20). This has the form of an effective magnetic moment
operator

µ̂eff = �
µB

~
g · Ŝ, (A8)



084503-22 Walder et al. J. Chem. Phys. 149, 084503 (2018)

which, unlike the formal electron magnetic moment operator,
is defined to act only on the spin degrees of freedom within
the ground electronic manifold.

We also consider matrix elements of µ̂ connecting the
ground and excited electronic states, corrected by perturba-
tion theory. Including the perturbation correction only for the
ground state, we find

h m| µ̂i |↵00m00i = �
µB

~

 
h0|L̂i |↵00ihm|m00i

+ ge

X

↵>0

h↵ |↵00i
X

k

h0|L̂k |↵i
E0 � E↵

hm|Ŝk |m00i
!
.

As we will see below, the second term would introduce terms of
order (E0 � E↵)�2 into our expressions for the molecular sus-
ceptibility. Similarly, a perturbative correction to the excited
state |↵00m00i would introduce terms of order (E0 � E↵)�2

and (E0 � E↵)�3. They are therefore neglected, and for our
purposes, we take

h m| µ̂i |↵00m00i = hm| �
µB

~
h0|L̂i |↵00i|m00i. (A9)

The generalized Van Vleck susceptibility equation,
Eq. (14), can be simplified by using Eqs. (A7) and (A9) to
express the magnetic moment matrix elements with respect
to the unperturbed basis states. This is done through their
substitution into the magnetic dipole moment matrix ele-
ments contained in the W factors of Eqs. (15) and (16).
The WI

m,ij term is thus formed as the summation over the
(2S + 1)-dimensional spin subspace of the ground electronic
state, referred to as the magnetically active manifold. Upon
inclusion of the perturbative corrections,

WI
m,ij =

X

m0
h m| µ̂i | m0ih m0 | µ̂j | mi

=
µ2

B

~2

X

k

X

l

gikgjlhm|Ŝk Ŝl |mi, (A10)

with the completeness relation
P

m0 |m0ihm0 | = 1̂ in the
truncated spin manifold. For the WII

m,ij term, which is to
be summed across the manifolds of the electronic excited
states,

WII
m,ij =

X

↵00

X

m00

h m| µ̂i |↵00m00ih↵00m00 | µ̂j | mi + h m| µ̂j |↵00m00ih↵00m00 | µ̂i | mi
E0 � E↵00

=
µ2

B

~2
hm|mi

X

↵00

h0|L̂i |↵00ih↵00 |L̂j |0i + h0|L̂j |↵00ih↵00 |L̂i |0i
E0 � E↵00

= 2µ2
B⇤ij, (A11)

which is in fact independent of m. The factor of
⇣
E0 � E↵00

⌘�1

already present explains the validity of discarding terms of
order higher than (E0 � E↵)0 in Eq. (A9).

The generalized Van Vleck equation is formed as the sum
over thermally accessible states, which in using Eqs. (A10)
and (A11) to calculate the W factors, we are implicitly assum-
ing is restricted to magnetically active manifold. Then, with
the zero-field energies given by Eq. (A5), we can express the
components of the molecular susceptibility as a sum over the
(2S + 1) unperturbed spin states,

�ij =
µ0µ2

B

~2

PS
m=�S

P
k
P

l gikgjlhm|Ŝk Ŝl |mie�E(2)
m /(kBT )

kBT
PS

m=�S e�E(2)
m /(kBT )

�2µ0µ
2
B⇤ij. (A12)

This second term, arising from the WII
m,ij factors, reveals the

temperature independent paramagnetism. The first term con-
tains the thermal (Boltzmann) average of Ŝk Ŝl. This quantity
yields a convenient expression in the high temperature approx-
imation E(2)

m ⌧ kBT provided that the zero of energy is shifted
to the center of gravity of the ground state manifold. The lat-
ter condition implies that the trace is stripped from the zero
field splitting tensor, D = D� � 1

3 Tr{D�}1, so that the con-
dition

P
m E(2)

m = 0 is fulfilled. Then the thermal average of
Ŝk Ŝl is

PS
m=�Shm|Ŝk Ŝl |mie�E(2)

m /(kBT )

PS
m=�S e�E(2)

m /(kBT )

=
1

2S + 1

SX

m=�S

hm|Ŝk Ŝl |mi
 
1 � 1

kBT
hm|Ŝ · D · Ŝ|mi

!

=
1

2S + 1

2666664
Tr
(
Ŝk Ŝl

)
� 1

kBT

X

o

X

p

DopTr
(
Ŝk ŜlŜoŜp

)3777775
.

(A13)

Inserting this into Eq. (A12) yields the formula of Eq. (18)
as the molecular susceptibility for spin-orbit perturbed LS-
ion systems, after using established formulas to evaluate the
traces.36 Note that for these systems, ⇤ represents the funda-
mental quantity: g and D are calculated from ⇤ by Eqs. (20)
and (21) and will be diagonal in the principal axis system of
⇤. Given their spectroscopic interpretation, however, they are
convenient to retain in Eq. (18).

Therefore, spin-orbit dequenched magnetism requires
that, on top of an orbitally nondegenerate ground state, we
have |�so|⌧ E1 � E0 (unless h1|L̂|0i = 0, which then requires
|�so| ⌧ E2 � E0, as in the case of CuCl2·2H2O), and that
the populated states are restricted to the ground spin multiplet
which can be treated in the high temperature approximation,
E(2)

m ⌧ kBT . The T�2 term of Eq. (18) was first expressed in
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terms of the D-tensor by Bleaney in the context of the crystal
field induced zero field splitting of lanthanide ions,55 and when
Eq. (18) is applied to the calculation of paramagnetic shifts, it is
subsumed by the theory of Kurland and McGarvey.105 Finally,
we note that a recent monograph by Pell et al.106 also gives
an expression for the molecular susceptibility that is nearly
identical to Eq. (18), except that the temperature independent
paramagnetism term is missing. Its absence appears to be the
result of neglecting the second-order orbital Zeeman Hamilto-
nian. In this work, however, we find that the temperature inde-
pendent paramagnetism term should not be neglected, as Table
S-V shows that its contribution to �zz in FeCl2·2D2O at 300 K
exceeds 6%, and is comparable to the T�2 term for all com-
ponents at this temperature. As already noted, this term arises
from a contribution which is independent of the electronic
spin state m, as seen in Eq. (A11). As such, each level of the
magnetically active manifold is raised uniformly and the tem-
perature independent contribution is not observable in EPR.
This may explain why temperature independent paramag-
netism has largely been overlooked in the magnetic resonance
literature.

APPENDIX B: SPIN MOLECULAR SUSCEPTIBILITY

The contact term in Eq. (9) requires evaluating the ther-
mal average of the electronic magnetic moment due to spin,
represented by the operator µ̂S ,

µ̂S = �
µBge

~
Ŝ, (B1)

in order to determine mS . This is not as simple as transcrib-
ing components according to µ̂ ! µ̂S in the W factors of
Eqs. (15) and (16), for the orbital component of µ still influ-
ences the Zeeman level structure of the magnetically active
manifold. Nonetheless, the derivation of the generalized Van
Vleck equation lends itself to straightforward modification,
allowing us to determine a spin molecular susceptibility �(S),
for which µ0mS = �(S)·B0.

The modification involves the power series expansion giv-
ing the energy of the paramagnetic complex in the presence of
the applied field,

Em = E(0)
m +

X

i

hm| µ̂i |miBi

+
X

i

X

j

X

n

hm| µ̂i |nihn| µ̂j |miBiBj

Em � En
. (B2)

The indices i, j refer to Cartesian field axes. This is the
expression for the energy given by the full electronic Hamil-
tonian (including spin-orbit coupling) with the addition of the
electronic Zeeman energy

Ĥ = Ĥe �
µB

~

⇣
L̂ + geŜ

⌘
· B. (B3)

The expected value of the induced electronic magnetic moment
of the (zero field) eigenstate m directed along the Cartesian
field direction i is given by

hµiim = �
@Em

@Bi
, (B4)

analogous to its definition in thermodynamics. Determina-
tion of the thermal average of this expected value according

to Boltzmann statistics for the other Cartesian field direc-
tions followed by generalization for arbitrary field directions
leads to the full form of Eq. (14), the generalized Van Vleck
equation.52

Equation (B4) also follows from Eqs. (B2) and (B3) by
the Feynman-Hellmann theorem.107 From Eqs. (B2) and (B3),
this theorem also gives the expectation value of the electronic
magnetic moment due to spin in the state m,

hµS,iim = �
ge

Bi

@Em

@ge
. (B5)

The derivation of the Van Vleck equation analog for �(S) pro-
ceeds with the calculation of the Boltzmann average of hµS,iim
as defined in Eq. (B5), followed by generalization for the
arbitrary field direction as for the ordinary generalized Van
Vleck equation.52 This leads to an equation identical in form
to Eq. (14) but which involves the hybrid W factors,

W (S),I
m,ij =

X

n0
hm| µ̂S,i |n0ihn0 | µ̂j |mi, (B6)

W (S),II
m,ij =

X

n00

hm| µ̂S,i |n00ihn00 | µ̂j |mi + hm| µ̂S,j |n00ihn00 | µ̂i |mi
Em � En00

.

(B7)

For the spin-orbit dequenched system defined by the
applicability of Eq. (18), it is straightforward to mirror the
derivation in Appendix A using the hybrid W factors to
arrive at a similarly concise expression for the spin molecular
susceptibility,

�(S) =
µ0µ2

BgeS(S + 1)

3kBT

"
g � (2S + 3)(2S � 1)

10kBT
g · D

#
. (B8)

As with Eq. (18), this expression can be worked out from
the Kurland and McGarvey theory of paramagnetic shifts,105

although our approach using the Feynman-Hellmann theorem
is closer to that of Narath28 in his calculation of the (total)
molecular susceptibility of CoCl2·2D2O. Interestingly, W (S),II

m,ij
vanishes for these systems to this order in perturbation theory,
implying that the temperature independent component of the
contact shift is negligible.

APPENDIX C: SINGLE SITE AFTER MOTIONAL
AVERAGE

Consider two ligand sites O1 and O01, where the heavy
atom positions with respect to O01 are known to be related to
O1 by some symmetry operation of the lattice. Since O1 and
O01 lead to the same correlation spectrum, it follows that the
corresponding tensors, hR{⇠}i and hR0{⇠}i, are isometric; i.e.
their eigenvalues are identical such that

hR0{⇠ }i = OhR {⇠ }iO�1, (C1)

where

hR0{⇠ }i =
NX

j=1

p0jR
0{⇠ }
j (C2)

and O is some orthogonal transformation. This strict relation-
ship is ensured if, for each j corresponding to one of the N
deuteron sites,

R0{⇠ }j = OR {⇠ }j O
�1, (C3)
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along with the crucial correspondence

pj = p0j . (C4)

To determine the nature of the orthogonal transformation
O, we turn to the paramagnetic shift tensor. We have for
each j,

R0{P }j = OR {P }j O
�1, (C5)

which by Eq. (12) permits us to establish the corres-
pondence,

0
j,k = O j,k , 8 j, k. (C6)

We now exploit the heavy atom lattice symmetry to select
the origin of our coordinate system to be the fixed point
of the lattice symmetry operation P relating O1 to O01 such
that

r0k = Prk , 8 k, (C7)

where rk gives the kth lattice coordinate (principally, those of
the paramagnetic transition metal atoms) for O1 and r0k those
for O01. This choice of origin also ensures that P can be rep-
resented by an orthogonal transformation. With respect to this
same origin, we write rj and r0j for the coordinates of the jth
deuteron site for O1 and O01, respectively. Then Eqs. (C6) and
(C7) imply that

⇣
r0k � r0j

⌘
= O

⇣
rk � rj

⌘
,

r0j = Orj + (P �O)rk , 8 j, k.
(C8)

But r0j cannot possibly express such a dependence on k. The
final term in Eq. (C8) must vanish, forcing us to identify
O = P. Crucially,

r0j = Prj, 8 j. (C9)

Therefore, barring accidental equivalence, we can assert that
when the correlation spectrum appears as though originating
from a single site, deuteron sites can be propagated from O1 to
all other sites in accordance with the overall heavy atom lattice
symmetry. Furthermore, because we have already established
pj = p0j , we can assign p factors to symmetry related sites for
the motional average cases we consider.
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I. SAMPLE PREPARATION AND PURIFICATION

A. CuCl2 · 2D2O

A large quantity of crude CuCl2 · 2D2O was produced by dissolving anhydrous CuCl2
(97 %, Sigma Aldrich) into approximately 20 mL of D2O (99.9 % D, Cambridge Isotopes)
and evaporating to dryness in a desiccator. 7 g of the large, deep green stock crystals were
later dissolved in 8 mL heavy water acidified by addition of a drop of 20 % DCl in D2O
(Aldrich) and dried under N2 flow. Care was taken not to expose the crystals to high rates
of N2 flow after it was found the crystals would, over the course of several minutes, revert
to the anhydrous form under these conditions.

This material was stored for over a year and was purified with the enrichment apparatus
described in the main text prior to this study. 5.9 g of the crude sample added to the
flask and dissolved into 6.0 mL of 8 % DCl in D2O at room temperature. Evaporation
under N2 counterflow and magnetic stirring produced a slurry after three hours. To achieve
thorough drying and avoid signal contamination from occluded heavy water, the flask was
then pumped down with high vacuum for an hour, with occasional application of weak N2

counterflow to allow manual agitation and breakup of solid with a plastic stir rod. With this
drying procedure, initially dense clumps of vivid, deep green crystals converted to larger
cyan crystals and needles after about 10 min. The final product was a loose, sea green
powder as shown in Fig. S1.
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B. NiCl2 · 2D2O

A mass of 5 g of NiCl2 ·6H2O (Sigma Aldrich) was partially dehydrated in the enrichment
apparatus at temperatures exceeding 100 �C for 4 hours. The solution was then cooled to
80 �C. At this temperature the flask was charged twice with 2.5 mL of a diluted 2 % DCl
in D2O solution, with the crystals dried under nitrogen flow between charges to afford a
yellow-green batch of crystals. Initial NMR analysis of these crystals indicated probable
hexahydrate contamination.

This material was stored for several months and purified prior to NMR analysis. The
enrichment apparatus described in the main text was charged with 3.1 g of old NiCl2 · 2D2O
which was dissolved into 4 mL of pure D2O at 95 �C. Over the next two hours two additional
charges of D2O were added as a slurry began to form, culminating with a 2 mL charge of 8 %
DCl in D2O. After another two hours at 95 �C in N2 atmosphere the slurry was thoroughly
dried by applying high vacuum for 45 min. The final product was a banana yellow powder
as shown in Fig. S1.

C. CoCl2 · 2D2O

A large quantity of crude CoCl2 · 6H2O was produced by dissolving anhydrous CoCl2
(Alfa/Morton Thiokol Inc.) into approximately 10 mL of slightly acidified (< 1 % DCl)
heavy water and evaporating to dryness in a desiccator. A mass of 5 g of the crude material
transferred into the enrichment apparatus and wetted with 1 mL 20 % DCl/D2O at 70 �C.
Crystals were dried under N2 while held at 70 �C with occasional light manual agitation by
a plastic stirring rod.

This material was stored for several months and purified prior to NMR analysis. The
enrichment apparatus described in the main text was charged with 2.2 g of old CoCl2 · 2D2O
which was dissolved into 2.5 mL of 8 % DCl in D2O. The solution was held at 70 �C under
nitrogen for several hours prior to dryness under high vacuum. The final product were light
purple crystals as shown in Fig. S1.

D. FeCl2 · 2D2O

A mass of 4.4281 g FeCl2 · 4H2O (Sigma Aldrich) was placed directly into the enrichment
apparatus and dried overnight at 70�C. It was subsequently charged with 5 mL of a 1.8 %
DCl/D2O solution and a 192 mg piece of pure iron metal. After crystallization another
4.9 mL of 1.8 % D2O/DCl solution was added. After cooling to 40�C four additional shots
of 2.5 mL of 2 % DCl/D2O were added over four hours, each at the stage when precipitation
was well underway but not complete. After raising the temperature of the solution to 70 �C
and holding the wet crystals were dried under high vacuum for 20 min resulting in a hard
concrete-like mat of solid. The iron chip was removed with the stir bar in the glove bag.
The freshly crushed powder was nearly pure white with only a faint tinge of green, as shown
in Fig. S1, but darkened noticeably in the days following the synthesis.

After several months the powder had turned a much deeper shade of green and had to
be purified prior to NMR analysis. The enrichment apparatus described in the main text
was charged with 3.0 g of the crude material which was dissolved into 4.3 mL of 8 % DCl
in D2O. A small chip of pure iron metal was added to reduce Fe3+. Over the course of

3



Figure S1: Photograph of the MCl2 · 2D2O samples used in this study.

several hours the oil bath temperature was raised from 45 �C to 85 �C, driving off the excess
solution. Dryness was completed by gradual application of high vacuum near 75 �C. The
iron chip was removed along with the stir bar in the glove bag. The final product was a
white powder consisting of small crystallites after crushing.

E. MnCl2 · 2D2O

An initial batch was prepared by dehydrating 5 g MnCl2 · 4H2O (Merck) above 155 �C
for 6 h to produce anhydrous MnCl2. After cooling the flask to 80 �C, 6.5 mL of 2 % DCl
in D2O was added, followed by an additional 3.0 mL to complete dissolution of the powder.
Drying under N2 flow proceeded at this temperature with occasional manual agitation using
a plastic stir rod.

This material was stored for several months and purified prior to NMR analysis. The
enrichment apparatus described in the main text was charged with 2.9 g of old MnCl2 · 2D2O
which was dissolved into 4.3 mL of 8 % DCl in D2O. The solution was held at 80 �C under
nitrogen for two hours prior to dryness under high vacuum. Pale pink crystals.
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II. NMR PARAMETERS

Table S-I gives rf transmission parameters used for each experiment. The maximum
rf amplitude we could generate with this coil was ⌫1(2H) = 660 kHz but values closer to
⌫1(2H) = 350 kHz were generally obtained after dematching the probe.

T1 measurements on the samples were performed using a shifted dp-echo version of the
Freeman and Hill modified inversion recovery sequence. These T1 values are shown in Table
S-II along with �2

red
for the fit to the exponential decay. The long wait period was 50 ms. The

echo delay used was 160 µs for each experiment, except for NiCl2 · 2D2O and FeCl2 · 2D2O,
which used echo shifts of 80 µs. This shows that 50 ms is sufficient for full 2H relaxation.

Table S-III lists the acquisition parameters for each of the shifting d-echo experiments. A
recycle delay of 50 ms was used. Each experiment was completed in less than 5 h, with the
exception of the CoCl2 · 2D2O and MnCl2 · 2D2O experiments, which were allowed to run
overnight. A 64-step nested phase cycle was employed, with each pulse phase independently
stepped in multiples of ⇡/2 and the receiver phase given by �R = �1 � 2�2 + 2�3.

Sample Attn Ptx / W ⌧90 / µs ⌧180 / µs

MnCl2 · 2D2O 11.0 dB 1459 0.74 1.47

FeCl2 · 2D2O 16 dB 1400 0.71 1.42

CoCl2 · 2D2O 11.8 dB 1306 0.77 1.54

NiCl2 · 2D2O 14.9 dB 1153 0.78 1.56

CuCl2 · 2D2O 17.3 dB 1270 0.75 1.50

Table S-I: Power settings and pulse length settings used for all experiments. ‘Attn’ refers
to attenuation of the pulses by the probe when dematched and was measured with an
oscilloscope via a directional coupler.

Sample T1 / ms �2
red

CuCl2 · 2D2O 9.8 2.60

NiCl2 · 2D2O 4.5 18.33

CoCl2 · 2D2O 9.2 5.27

FeCl2 · 2D2O 7.6 2.05

MnCl2 · 2D2O 4.4 6.78

Table S-II: Longitudinal relaxation parameters at T = 300.0 K by fitting the exponential
decay function Mz(t) = M0e�t/T1 to Freeman-Hill inversion recovery data.
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Sample ⌧ / µs (�t2,�t1)/µs (TD2,TD1) Scans

MnCl2 · 2D2O 80 (1.6, 3.2) (192, 80) 8192

FeCl2 · 2D2O 40 (2.0, 4.0) (256, 40) 7168

CoCl2 · 2D2O 80 (1.6, 3.2) (192, 80) 8192

NiCl2 · 2D2O 160 (2.0, 4.0) (256, 48) 7168

CuCl2 · 2D2O 160 (1.6, 3.2) (384, 83) 2048

Table S-III: Acquisition parameters for the shifting d-echo experiments. �t2 and �t1 are
the respective dwell times for the direct and indirect dimensions. TD2 and TD1 refer to
the number of directly acquired complex points and the number of t1 increments used,
respectively.

6



III. LOW TEMPERATURE SHIFTING d-ECHO SPECTRUM

A shifting d-echo spectrum of NiCl2 · 2D2O taken at 173 K is shown in Fig. S2. This
spectrum is processed in the same way those of the main text. The line shape was analyzed
for the tensor parameters given in Tab. S-IV. Though the two ligand deuterons are po-
tentially inequivalent when the ligand is frozen, the single site model provides a reasonable
coarse description of the line shape. The instantaneous value of ⇣P = 1320 ppm we find in
this analysis would, with scaling according to a Curie law T�1 dependence, correspond to
760 ppm at 300 K. This is slightly larger but, on the whole, comparable to the instantaneous
values predicted for the three sites listed in Table IV. of the main text. Also, note that this
spectrum was recorded below the crystallographic phase transition around 220 K, [1] which
is associated with slight shifts in the relative positions of the chains. This transition, along
with the anticipated deuteron inequivalence at 173 K, prevents a comparison with the room
temperature data from being anything more than qualitative.

Paramagnetic shift / kHz/MHz
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Figure S2: Shifting d-echo spectrum of NiCl2 · 2D2O taken at T = 173 K. Temperature
stabilization was lost and the temperature began to increase roughly 3 h into the
experiment, reaching 188 K after 4 h and 220 K after the 5 h experiment had completed.
The effect on the line shape is minimal as the desired signals (save for the total echo
artifact) had decayed in t1 after 3 h.

Piso / ppm ⇣P / ppm ⌘P Cq / kHz ⌘q ↵rel �rel �rel

-200 1320 0.2 230 0.1 50� 40� 20�

Table S-IV: Single site best fit tensor parameters determined from the sheared 2D
shifting-d echo line shape for NiCl2 · 2D2O at 173 K.
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IV. CRYSTAL FIELD ENERGY LEVELS

Figs. S3-S6 illustrate the weak crystal field approach to determining the zero field struc-
ture of the magnetically active manifold for the iron group chloride dihydrates, meant to
provide qualitative visual accompaniment to the descriptions in the main text. Symmetry
labels are provided according to isolated [MCl4(D2O)2]�2 complexes of pseudo-D2h point
group symmetry. Energy levels are not drawn to scale. The symmetry labels, particularly
for excited states, may not always correspond to the correct energy ordering.

spin-orbit
couplingSymmetry descentFree

ion

Figure S3: Lifting of Fe2+ free ion degeneracy in the weak crystal field of [FeCl4(D2O)2]�2

through successive imposition of the cubic, axial, and rhombic components of the crystal
field. The spin-orbit coupling lifts the fivefold spin degeneracy of the D2h orbital singlets.
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Symmetry descent
spin-orbit
coupling

Free
ion

Figure S4: Lifting of Co2+ free ion degeneracy in the weak crystal field of [CoCl4(D2O)2]�2

through successive imposition of the cubic, axial, and rhombic components of the crystal
field. The spin-orbit coupling lifts the fourfold spin degeneracy of the D2h orbital singlets.
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Symmetry descentFree
ion

Figure S5: Lifting of Ni2+ free ion degeneracy in the weak crystal field of [NiCl4(D2O)2]�2

through successive imposition of the cubic, axial, and rhombic components of the crystal
field. Spin-orbit coupling lifts the threefold spin degeneracy of the ground orbital singlet;
this effect is not shown as we neglect this relatively small influence in the main text. States
originating from the relatively low lying 3P and 1D terms are not shown.
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Symmetry descentFree
ion

Figure S6: Lifting of Cu2+ free ion degeneracy in the weak crystal field of [CuCl4(D2O)2]�2

through successive imposition of the cubic, axial, and rhombic components of the crystal
field. Spin-orbit coupling is unable to lift the Kramers degeneracy of the orbital singlets.
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V. CONTRIBUTIONS TO SPIN-ORBIT DEQUENCHED MOLECULAR SUS-
CEPTIBILITY

CuCl2 · 2D2O NiCl2 · 2D2O

Term �xx / Å3 �yy / Å3 �zz / Å3 �xx / Å3 �yy / Å3 �zz / Å3

Temperature independent 0.00029 0.00065 0.00215 0.00393 0.00393 0.00393

Curie 0.02733 0.02882 0.03545 0.08980 0.08980 0.08980

ZFS 0 0 0 0 0 0

Total 0.02762 0.02947 0.03760 0.09373 0.09373 0.09373

FeCl2 · 2D2O MnCl2 · 2D2O

Term �xx / Å3 �yy / Å3 �zz / Å3 �xx / Å3 �yy / Å3 �zz / Å3

Temperature independent 0.00632 0.00632 0.02157 0 0 0

Curie 0.23115 0.23115 0.28989 0.29039 0.29039 0.29039

ZFS -0.00881 -0.00881 0.02209 0 0 0

Total 0.22866 0.22866 0.33355 0.29039 0.29039 0.29039

Table S-V: Individual contributions of the temperature independent, Curie, and ZFS terms
to the spin-orbit dequenched molecular susceptibility eigenvalues.

Table S-V lists the contribution of each term in the formula for calculating the molecular
susceptibility using the orbital angular momentum dequenching tensor, ⇤, which was used
for CuCl2 · 2D2O, NiCl2 · 2D2O, FeCl2 · 2D2O, and MnCl2 · 2D2O. The molecular suscept-
ibility for CoCl2 · 2D2O was calculated numerically using the first-order approach described
in the main text; further details are given in Fig. S7.
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Figure S7: Temperature dependence of the CoCl2 · 2D2O principal components of the bulk
magnetic susceptibility tensor �m (S. I., dimensionless) using data taken from Fig. 12,
Ref. [2], according to the reanalysis procedure described in the main text. The curves
represent the susceptibility calculated with the full Van Vleck equation using our
numerical model given the crystal field parameters �ax and �rh. The values
�ax = �125 meV and �rh = �43 meV are determined by fitting Narath’s experimental
bulk magnetic susceptibility data, shown as points clustering around their respective
curves, for the three principal components simultaneously. Significant deviation from
Curie-Weiss behavior, particularly for (�m)xx, which displays a strong temperature
independent component, is noteworthy. Owing to this behavior, our analysis predicts
interchange of the Haeberlen labeled z- and x-axes near 163 K. Independent of any
labeling convention, at all temperatures the component of least magnitude is very nearly
aligned with the short Co-Cl bonds.
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VI. MOTIONAL MODEL SURVEY FOR PYRAMIDAL COORDINATION IN
NICL2 · 2D2O

In Fig. S8, we show ternary plots illustrating the values of |h⇣qi/⇣q| and h⌘qi for general
cases of site occupancy where the pi values are arbitrary, subject to the constraint that
they sum to unity. The plots exhibit three-fold rotational and reflection symmetries, corres-
ponding to eigenvalue invariance under cyclic permutation and swapping of the pi indices,
respectively. This is equivalent to applying active physical rotation and reflection operations
to the deuteron coordinates, from which this invariance can be proven. Therefore, the order
of the pi is not relevant in the analysis of the quadrupolar tensor eigenvalues.

Diagrams are shown for specific values of ✓w of 50�, 52.5�, and ✓M ⇡ 54.7�, the latter
corresponding to the case where the D–O–D bond angle is exactly the tetrahedral angle. We
see clearly that h⌘qi is a highly discriminating parameter. For ideal tetrahedral geometry,
✓w = ✓M , h⌘qi = 1 if and only if at least one of the pi = 0.5. At the other extreme, h⌘qi = 0
for the case of equal occupancy, p1 = p2 = p3 = 1/3. As ✓w is lowered toward 50�, h⌘qi
remains zero for the case of equal occupancy, though having at least one of the pi = 0.5 is
no longer a necessary nor sufficient condition for h⌘qi = 1. Nevertheless, we see that even
with a D–O–D angle as low as 100�, one of the pi must be greater than 0.4 to satisfy our
experimental observation of h⌘qi near unity.

This leaves few regions of compatibility. Consider now without loss of generality a value
of p2 between 0.4 and 0.45, being the largest of the pi, to define one such region. We see that
with the additional condition p1 = p3, we move towards the barycenter of the diagram, where,
depending on the value of ✓w, either h⌘qi or |h⇣qi/⇣q| is much smaller than the experimentally
observed values. With p1 = p2, we consider a region closer the vertex of the diagram, and
here we can approach compatible eigenvalues provided ✓w ⇡ 52.5�. While decreasing ✓w and
increasing p2, we can either increase p1 or p3 to follow a region of improving compatibility
up to the diagram boundary where p2 = 0.5. The only other distinct region of compatibility
is bounded by the edge of the diagram and the curved h⌘qi = 1 boundary. The furthest
point away from the h⌘qi = 1 boundary has p2 = 0.5 and p1 = p3 = 0.25. Here the best
agreement is found when ✓w & 52.5�.

This exhausts the significantly distinct possibilities. Corresponding to each of these
regions, we investigate the solutions of significance given in the following Table S-VI:

Motional characteristic (p1, p2, p3) ✓w |h⇣qi/⇣q| h⌘qi

Encumbered rotation (0.424,0.424,0.152) 52.9� 0.343 0.806

Right-skewed vertex pivoting (0.369,0.5,0.131) 51.1� 0.336 0.914

Symmetric vertex pivoting (0.25,0.5,0.25) 53.6� 0.336 0.915

Left-skewed vertex pivoting (0.131,0.5,0.369) 51.1� 0.336 0.914

Table S-VI: Definition of the four distinct classes of motion in NiCl2 · 2D2O compatible
with the experimentally observed quadrupolar tensor parameters.

Although the order of the pi values is not relevant in the analysis of the quadrupolar tensor
eigenvalues, the ordering does affect the result of the paramagnetic shift since the lattice
coordinates are not affected by the ligand symmetry operations that achieve the exchange
of indices. Ultimately, simulations of full correlation spectra, which brings in five additional
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parameters (the paramagnetic shift tensor eigenvalues and its relative orientation to the
quadrupole coupling tensor), must be carried out to further screen candidates. Because an
appropriate value of �d is not known, the entire range between �⇡ and ⇡ is surveyed. This
automatically accounts for the models that differ only by cyclic permutation of the indices,
since this is equivalent to an active 2⇡/3 rotation. When two of the pi are equal, the time-
averaged configuration of the ligand is superposable on its mirror image and configurations
that differ only by swapping two of the indices are automatically accounted for as well. Of
the aforementioned classes, only the skewed vertex pivoting models have p1 6= p2 6= p3, and
for these we must consider the distinct left-handed and right-handed cases separately, giving
four classes in total. For each of these, six values of �d are chosen and the correlation spectra
simulated as shown in Fig. S9. Cursory visual inspection eliminates all but the symmetric
vertex pivoting model as viable candidates. Furthermore, the similarity of the encumbered
rotation model to the skewed vertex pivoting models suggests that any model in the trans-
ition zone, where ✓w is decreased and p2 is increased from 0.424 to 0.5 with compensating
changes in p1, and p3, will also fail to be a suitable candidate. Thus, the motional model
with p2 = 0.5 and p1 = p3 = 0.25 is uniquely the superior motional model, affirming the
choice we made using the less rigorous but physically transparent subset analysis in the main
text.
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Mode Torsion axis, ↵ I↵/(u Å2
) !↵ / THz h✓2↵i / rad2

Wag xw 1.197 7.49 0.105

Twist yw 2.369 9.95 0.032

Rock zw 3.566 12.1 0.016

Table S-VII: Torsional parameters for MnCl2 · 2D2O. The torsion axes are given with
respect to the ligand-fixed frame. Moments of inertia are calculated from the geometry of
a free heavy water ligand. The torsional frequencies !↵ were reported in a Raman
spectroscopy study and have been scaled to account for the deuterium labeling.[3] h✓2↵i is
given in the harmonic oscillator approximation according to Eq. (7).

VII. TENSOR AVERAGING BY TORSIONAL MOTION

The paramagnetic shift tensor is affected by the librational motion of the ligand, fast
on the NMR time scale. We consider here the averaging effects of the torsional modes for
the case of trigonal ligand coordination. We parameterize the dependence of instantaneous
tensor on the torsional angles and evaluate

hPiI =
Tr{P (✓xw , ✓yw , ✓zw) e

�Hlib(✓xw ,✓yw ,✓zw )/(kBT )
}

Tr{e�Hlib(✓xw ,✓yw ,✓zw )/(kBT )}
, (1)

where hPiI denotes the instantaneous tensor P for the deuteron site under consideration,
corrected for torsional motion, and the ✓↵ represent rotations about the torsion axes away
from the equilibrium position of the ligand. To render this tractable, we make the approx-
imation that the torsional modes are uncoupled,

Hlib (✓xw , ✓yw , ✓zw) = Hwag (✓xw) +Htwist (✓yw) +Hrock (✓zw) , (2)

and assume that the temperature is low enough that the amplitude of the torsions is small,
allowing us to approximate Hmode using the harmonic oscillator potential in an angular
coordinate basis,

Hmode (✓↵) = �
~2
2I↵

d2

d✓2↵
+

1

2
I↵!

2
↵✓

2
↵. (3)

where I↵ is the moment about the principal axis ↵ of the inertia tensor and !↵ is the
torsional frequency, which is experimentally accessible by spectroscopy. The conventional
ordering of the inertia tensor principal axis system is such that the principal moments are
ordered according to Ix  Iy  Iz. The inertia tensor is easily calculated for heavy water
in the ligand fixed frame, in which it is found to be diagonal, with the principal moments
ordered according to Ixw < Iyw < Izw as shown in Table S-VII. Aside from a shift in origin
from the oxygen atom to the center of mass of the ligand, the ligand fixed frame is the PAS
of the inertia tensor by the standard labeling convention.

We adopt the parameterization

P (✓xw , ✓yw , ✓zw) = D0 + a1✓xw + a2✓
2
xw

+ b1✓yw + b2✓
2
yw + c1✓zw + c2✓

2
zw , (4)
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Figure S10: Departure of the lattice-fixed frame S2,0 component of the instantaneous
paramagnetic shift tensor R{P}

1 (✓xw , ✓yw , ✓zw) in MnCl2 · 2D2O from its value at the
equilibrium deuteron position. The horizontal axis, in radians, corresponds to ✓↵ ranging
from �30� to 30�. Red dots are the numerically calculated values using the “Mn+Cl”
source model and fCl = 6.7%. The red line is the best fit parabola according to Eq. (4).
Blue and yellow lines are respectively the (arbitrarily scaled) position space harmonic
oscillator wave functions | 0(✓↵)|

2 and | 1(✓↵)|
2 calculated using the moments of inertia

and torsional frequencies in Table S-VII. They are given to provide a sense of the angular
domain over which the instantaneous paramagnetic shift tensor is “sampled”.

where D0 is the instantaneous paramagnetic shift tensor calculated at the equilibrium po-
sition of the ligand. The remaining coefficient tensors are to be determined by calculating
P (✓xw , ✓yw , ✓zw) in the lattice-fixed frame as a function of one of the ✓↵ coordinates while
holding the other two coordinates at zero and fitting the simplified function to a parabola.

With Eqs. (2) and (4) we find that Eq. (1) reduces to

hPiI = D0 + a2h✓
2
xw
iI + b2h✓

2
ywiI + c2h✓

2
zwiI . (5)

Odd powered averages of ✓↵ vanish because of the symmetry of the Hmode (✓↵). Each angular
variance h✓2↵iI represents a statistical average over the canonical ensemble,

h✓2↵iI =
Tr{✓2↵e�Hmode(✓↵)/(kBT )

}

Tr{e�Hmode(✓↵)/(kBT )}
, (6)

which for the harmonic oscillator problem can be solved to give the following analytic solu-
tion:

h✓2↵iI =
~

I↵!↵

✓
1

2
+

1

e~!↵/(kBT ) � 1

◆
. (7)

Using I↵ and !↵ we calculate the variances using Eq. (7) and give the results in Table S-VII.
It is worth noting that experimental data from NMR and NQR can be used to determine
the h✓2↵iI in favorable cases.[4, 5]

In our regression analysis of the tensor coefficients in Eq. (5), we used the irreducible
spherical basis. Fig. S10 illustrates the quadratic parameterization according to Eq. (4) for
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Compound Tensor h⇣P i / ppm h⌘P i h↵reli

CoCl2 · 2D2O
hA{D0}i 1320 0.392 164.4�

hA{hPIi}i 1369 0.373 165.7�

FeCl2 · 2D2O
hA{D0}i 1150 0.705 136.9�

hA{hPIi}i 1193 0.655 136.3�

MnCl2 · 2D2O
hA{D0}i 1233 0.601 147.1�

hA{hPIi}i 1278 0.556 147.1�

Table S-VIII: Torsion-corrected motionally averaged paramagnetic shift tensors for the
isostructural series in the ligand-fixed frame (equivalent to the efg PAS), hA{PI}i,
compared to the uncorrected tensors, hA{D0}i. The torsion parameters in Table S-VII were
used for each system. The paramagnetic shift tensor calculation implemented the “M+Cl”
source models with fCl = 6.7% (Mn), fCl = 4.1% (Fe), and fCl = 3.9% (Co).

the S2,0 component of R{P}

1 (✓xw , ✓yw , ✓zw). The parameterization is rather good within 30�

of equilibrium for each torsional mode. With the coefficient tensors and angular variances
known, we calculate the torsion-corrected motionally averaged paramagnetic shift tensor in
the lattice fixed frame, hR{hPIi}i, in the same way as described in the the trigonal motional
model section of the main text but with the substitution R{P}

1 ! R{hPIi}
1 . The paramagnetic

shift tensor of the ligand frozen in its equilibrium position expressed in the PAS of the
efg tensor (which is unaffected in this model of torsional averaging), hA{D0}i, is of course
identical to results for hA{P}

i presented in the main text. With the inclusion of the torsional
correction, the hA{hPIi}i tensor tends to larger h⇣P i and smaller h⌘P i, while h↵reli is roughly
unchanged. These effects are consistent across the isostructural series, as seen in Table
S-VIII. Neglect of torsion influences the results to a level of no more than 5% at 300 K.

VIII. MARGINAL PARAMETER DISTRIBUTIONS

The following histograms are giving for the purposes of visualizing secondary likelihood
maxima and correlations between fit parameters.
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Figure S11: Histograms showing maximum likelihood parameter distributions for
CuCl2 · 2D2O marginalized over all variables but X (horizontal axis). The response axis
corresponds to P (X), the probability that X falls within its binned range.
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Figure S12: Histograms showing maximum likelihood parameter distributions for
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IX. STRUCTURAL PARAMETERS AND WATER LIGAND GEOMETRY

Compound Space group (a, b, c) / Å � Ref. rOD/Å 2✓w �d T/K Ref.

MnCl2·2H2O C2/m (7.409, 8.800, 3.691) 98.67� [6]

FeCl2·2H2O C2/m (7.355, 8.548, 3.637) 98.18� [6] 0.918 103.9� 52.26� 4.2 [7]

CoCl2·2D2O C2/m (7.2789, 8.5533, 3.5686) 97.58� [8] 0.980 103.2� 57.76� 77 [9]

NiCl2·2H2O C2/m (10.9965, 6.8858, 6.9093) 53.3552� [10]

CuCl2·2H2O Pmna (8.104, 3.757, 7.433) 90� [11] 0.948 111.4� 51.47� 300 [11, 12]

Table S-IX: Structural and ligand geometry parameters. The unit cell parameters a, b, c, �
were taken from the cited room temperature X-ray diffraction studies. The parameters rOD

and 2✓w were determined with coordinates from neutron diffraction or, for CuCl2·2H2O,
X-ray refinement of the neutron diffraction data, at the specified temperature.

Compound Motional Model 2✓w

MnCl2 · 2D2O trigonal 109.47�

FeCl2 · 2D2O trigonal 109.07�

CoCl2 · 2D2O trigonal 108.46�

NiCl2 · 2D2O pyramidal 107.17�

CuCl2 · 2D2O trigonal 112.55�

Table S-X: Predictions of 2✓w from experimental |h⇣qi/⇣q| and h⌘qi values.
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