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ABSTRACT
Many linear inversion problems involving Fredholm integrals of the first kind are frequently encountered in the field of magnetic resonance.
One important application is the direct inversion of a solid-state nuclear magnetic resonance (NMR) spectrum containing multiple overlap-
ping anisotropic subspectra to obtain a distribution of the tensor parameters. Because of the ill-conditioned nature of this inverse problem,
we investigate the use of the truncated singular value decomposition and the smooth least absolute shrinkage and selection operator based
regularization methods, which (a) stabilize the solution and (b) promote sparsity and smoothness in the solution. We also propose an unam-
biguous representation for the anisotropy parameters using a piecewise polar coordinate system to minimize rank deficiency in the inversion
kernel. To obtain the optimum tensor parameter distribution, we implement the k-fold cross-validation, a statistical learningmethod, to deter-
mine the hyperparameters of the regularized inverse problem. In this article, we provide the details of the linear-inversion method along with
numerous illustrative applications on purely anisotropic NMR spectra, both synthetic and experimental two-dimensional spectra correlating
the isotropic and anisotropic frequencies.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0023345., s

I. INTRODUCTION
Nuclear magnetic resonance (NMR), like other spectroscopies,

is a probe of the local structure. To obtain these local structures
from an experimental spectrum, one must (1) determine the under-
lying distribution of parametersR that quantify the tensorial interac-
tions of the nuclear moments with local magnetic and electric fields
and (2) have quantitative relationships for mapping the distribu-
tion of nuclear moment interaction parameters into local structure
distributions.

Determining the parameters, R, from an inhomogeneous NMR
spectrum,1 s(ν), usually begins by modeling the spectrum as a lin-
ear combination of N simulated subspectra, each associated with
a nuclear spin system with a specific set of nuclear moment inter-
action parameters, R. In the case of an ordered sample, this linear
combination can be written as

s(ν) = N∑
i=1 fiK(ν,Ri), (1)

where ν is the spectroscopic dimension and K(ν,Ri) represents a
simulated subspectrum of a nuclear spin system with a given set of
parametersRi. The population f i and parametersRi of each spin sys-
tem contributing to the spectrum are determined by a numerical
least-squares analysis, comparing the simulated and experimental
spectra.

In crystalline materials, this is traditionally performed as a non-
linear least-squares analysis due to the non-linear dependence of
K(ν,Ri) on R, with N usually fixed to the minimum number of
spin systems needed to obtain a good fit of the spectrum—a value
expected to be consistent with the number of magnetically inequiv-
alent sites in the crystal. In this traditional approach, each subspec-
trum is convolved with a Lorentzian line shape to account for finite
transition lifetimes. More often than not, an additional ad hoc line
broadening convolution with a Gaussian line shape is applied to
each subspectrum to model the effects of structural disorder on the
spectrum. Such structural disorder effects on a spectrum, however,
are more realistically modeled with a continuous distribution of R,
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written as

s(ν) = ∫
R
f (R)K(ν,R)dR, (2)

where f (R) is the continuous and multi-dimensional distribution of
nuclear spin system parameters present within a sample.

Equations (1) and (2) suggest turning the traditional non-
linear least-squares problem into a linear one by considering only a
basis set of pre-calculated subspectra,K(ν,R), associated with some
unknown parameter distribution, f (R). Such linear problems2–4 are
frequently encountered in a variety of biological4 and geological2,3
NMR applications, particularly relaxation measurements—spin–
lattice T1, spin–spin T2, diffusion D, and multi-dimensional corre-
lations5,6 among them. The general challenge with this approach is
that Eq. (2) is a Fredholm integral of the first kind,7 and the inverse
of the forward computation, i.e., calculating f (R) from s(ν), is often
an ill-posed problem.8 Both Eq. (1) and, using a quadrature rule,7
Eq. (2) can be written as a matrix equation

s = K ⋅ f, (3)

where s is a spectrum vector of length m, f is the model parameter
vector of length n, and K is an m × n kernel matrix. With d param-
eters in R, one can imagine constructing a d-dimensional grid of
amplitudes and a corresponding d-dimensional grid of basis sub-
spectra. In this linear inversion problem, the d-dimensional grid
of amplitudes are stacked into a one-dimensional model vector, f,
with the basis subspectra placed in the corresponding columns of
the kernel matrix, K.

In one of the earliest attempts to solve the inverse problem
with an NMR spectra, Peterson et al.9–11 obtained the distribution
of 11B quadrupolar coupling constants from the 11B static spec-
trum of a B2O3 glass using truncated singular value decomposition
(TSVD).8 In this pioneering but overlooked work, they reduced
the size of f with an unrealistic assumption for the basis set of
subspectra—allowing only the quadrupolar coupling constant, Cq,
to vary, while all other parameters such as the quadrupolar asym-
metry and the shielding tensor parameters were ignored or held
fixed. Obviously, a successful forward or inverse calculation requires
having a complete basis set of K(ν,R) for accurately modeling the
spectrum. Numerous successful efforts when R contains only one
parameter can be found in the solid-state NMR literature, such as
the de-Paking of one-dimensional NMR spectra12–17 or obtaining
one-dimensional angle distributions from two-dimensional NMR
spectra.18

In the case of solid-state NMR spectra of dilute (isolated) spin
1/2 nuclei, R would correspond to the three principal components
of the symmetric part of the nuclear shielding tensor. These three
parameters are re-expressed as the isotropic chemical shift, δ(cs)iso , and
two other parameters describing the anisotropy of the interaction.
In the Haeberlen notation,19,20 these latter two parameters are rep-
resented by the nuclear shielding anisotropy, ζσ , and asymmetry,
ησ . The form of K(ν,R) would also depend on whether the mea-
surement takes place under static, variable-angle spinning (VAS) or
magic-angle spinning (MAS) conditions. The MAS basis subspec-
tra become less distinguishable as spinning sidebands are eliminated
with increasing rotor speeds. This leads to greater rank deficiency in

the kernel, K, and, as expected, increased uncertainty in determin-
ing the distribution of the tensor parameters. On the other hand,
the great advantage of faster MAS speeds is that R gets reduced to
a single parameter, δ(cs)iso , resulting in a simplified spectral analysis,
albeit with a loss of the local structure information contained in the
anisotropy parameters.

For dilute quadrupolar nuclei, R would include not only the
three principal components of the symmetric part of the nuclear
shielding tensor but also two principal components of the sur-
rounding traceless electric field gradient (EFG) tensor as well as
the three Euler angles specifying the relative orientation between
the two tensors. For the subspectra of quadrupolar nuclei expe-
riencing only first-order anisotropies, R gets reduced to a single
parameter, δ(cs)iso , when spinning sidebands are eliminated at suf-
ficiently high MAS speeds. When second-order anisotropies are
present, high MAS speeds can only reduce R down to δ(cs)iso , the
quadrupolar coupling constant, Cq, and the quadrupolar asymmetry
parameter, ηq.

A major advantage of multi-dimensional NMRmethods is that
the influence of different subsets of nuclear moment parameters
on the subspectra can be altered along different spectral dimen-
sions. Thus, for the same set of R, the multi-dimensional basis
subspectra tend to be more distinguishable compared to the one-
dimensional basis subspectra, leading to less rank deficiency in
the kernel, K, and decreased uncertainty when determining the
distribution of R.21,22 Two-dimensional NMR methods that sep-
arate and correlate the isotropic and the anisotropic frequency
contributions into orthogonal dimensions are often used to deter-
mine NMR tensor parameters. For uncoupled spin I = 1/2 nuclei,
this includes techniques such as 2D One Pulse (TOP) MAS,23,24
phase adjusted spinning sidebands (PASS),25–27 magic-angle turn-
ing (MAT),28,29 extended chemical shift (XCS) modulation,30,31
magic-angle hopping (MAH),32 magic-angle flipping (MAF),33
Recoupling Of Chemical Shift Anisotropy (ROCSA),34 and Vari-
able Angle Correlation Spectroscopy (VACSY).35 For half-integer
quadrupolar nuclei, this includes techniques such as dynamic-
angle spinning (DAS),36–38 multiple-quantummagic-angle spinning
(MQ-MAS),39,40 and satellite-transition MAS (ST-MAS).41,42 A key
feature of all these 2D isotropic/anisotropic correlation spectra—
either as acquired or after a shear transformation—is that the sub-
spectral basis set needed to model an anisotropic cross section,

s(ν∣δiso) = ∫
R
K(ν,R)f (R∣δiso)dR, (4)

depends only on two anisotropy parameters. For the anisotropic
cross sections from the spin I = 1/2 techniques,23–33,35,43 R is reduced
down to the two parameters describing the nuclear shielding
anisotropy. For the half-integer quadrupolar nuclei techniques,36–42
R can be reduced down to the two parameters describing the
nuclear quadrupolar coupling. Note, in this latter case, the cross
section’s correlated isotropic shift, δiso, is a linear combination of a
second-order isotropic quadrupolar shift and an isotropic chemical
shift.44

In previous attempts to apply linear inversion methods to the
11B DAS spectrum of B2O3 glass45 and the 23Na and 27Al MQ-MAS
spectra of borosilicate glasses,46 the asymmetry parameter, ηq, was
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unrealistically held constant while determining a bivariate distribu-
tion of isotropic, δ(cs)iso and Cq, parameters. Similarly, the shielding
asymmetry parameter, ησ , was held constant without justification
in a recent application of linear inversion methods to determine
the distribution of shielding anisotropies in the 29Si 2D PASS NMR
spectra of silica-based nuclear waste glasses.22 Although not explic-
itly stated, it is likely that the regularization used in these studies,
TSVD or the related ridge regression47 (aka Tikhonov), performed
poorly and a more complete subspectral basis set could not be
used to obtain a meaningful trivariate distribution of tensor param-
eters when modeling these 2D isotropic/anisotropic correlation
spectra.

In this paper, we take advantage of recent advances in linear
inversion and statistical learning algorithms as well as better model
selection methods48–52 to obtain a robust inversion method for
determining the trivariate distribution of NMR tensor parameters
from 2D isotropic/anisotropic correlation spectra. Here, we focus
primarily on determining the distribution of 29Si nuclear shielding
tensors from the experimental 2D MAF and MAT spectra of silicate
glasses.

To minimize rank deficiency in the inversion kernel and obtain
a more robust inversion, we also propose a new and unambiguous
representation for the two anisotropy parameters using a piecewise
polar coordinate system, where the magnitude of ζ forms the radial
dimension and η forms the angular dimension. In this more natural
representation, the ζ and η parameters are replaced with two Carte-
sian parameters denoted with x and y (vide infra). This x–y notation
overcomes the two serious shortcomings of the Haeberlen ζ–η nota-
tion20 that (1) η becomes undefined when ζ goes to zero and (2) ζ has
a sign degeneracy when η = 1. In the Herzfeld–Berger (also known
as Maryland) span and skew notation, the skew parameter similarly
becomes undefined when span goes to zero.53

Finally, we have created the open-source python software pack-
age, mrinversion, for implementing the solid-state NMR spectrum
inversions described here.54 Details for obtainingmrinversion, along
with the example datasets discussed in this article, are given at the
end.

II. THEORETICAL BACKGROUND AND METHODS
A. Nuclear shielding interaction

In this article, we follow the International Union of Pure
and Applied Chemists (IUPAC) definitions for nuclear shielding
and chemical shift interactions.20 The isotropic nuclear shielding is
defined as the trace of the nuclear shielding tensor,

σiso = 1
3(σzz + σyy + σxx), (5)

where σzz , σyy, and σxx are the components of the second-rank
shielding tensor. The isotropic chemical shift is defined as

δ(cs)iso = σref − σiso
1 − σref , (6)

where σref is the nuclear shielding of the reference compound,
tetramethyl silane (TMS) for this study.

The nuclear shielding tensor can be visualized as a three-
dimensional ellipsoid, and the deviations, positive or negative, of this
ellipsoid from a sphere are best understood by examining the ele-
ments of the traceless symmetric part of the nuclear shielding tensor,
given by

S(σ)ik = 1
2(σik + σki) − σiso. (7)

The principal axis system of the second-rank symmetric tensor, S(σ ),
is defined as the coordinate system, where S(σ ) is diagonal with prin-
cipal components, λ(σ)zz , λ(σ)yy , and λ(σ)zz ordered, according to the
Haeberlen convention,20 such that

∣λ(σ)zz ∣ ≥ ∣λ(σ)xx ∣ ≥ ∣λ(σ)yy ∣. (8)

Additionally, we define the second-rank symmetric tensor anisotropy,
ζσ , and asymmetry parameter, ησ , according to

ζσ = λ(σ)zz and ησ = λ(σ)yy − λ(σ)xx

ζσ
. (9)

Similarly, following the IUPAC convention,20 the notation ζδ repre-
sents the chemical shift anisotropy, given by

ζδ = −ζσ , (10)

however, in this article, we will keep our discussion in terms of
the nuclear shielding anisotropy, ζσ . Furthermore, for the remain-
der of this article, we shall drop the σ subscript and indicate the
nuclear shielding anisotropy and asymmetry parameters with ζ and
η, respectively.

The first-order contribution of the nuclear shielding interaction
to the NMR transition (mi →mf ) frequency is given by

Ω(1)
σ (Θ,mi,mf ) = − ω0 σiso (mf −mi)

− ω0 ζ D{σ}(Θ) (mf −mi), (11)

where ω0 = −γIB0 is the Larmor frequency, γI is the gyromagnetic
ratio of the nucleus, B0 is the external magnetic flux density, and the
orientation dependence of the shielding anisotropy is given by

D{σ}(Θ) = P0
2(cosβ) − η

6P
2
2(cosβ) cos 2α, (12)

where α and β define the orientation of the shielding tensor relative
to the external magnetic field vector, B, and P0

2(cosβ) and P2
2(cosβ)

are the associated Legendre polynomials.

B. Linear inverse method
A one-dimensional linear problem is of the form

strue(x1) + e(x1)"######################################$######################################%
s(x1)

= ∫ K(x1, x2) f (x2) dx2, (13)

where K(x1, x2) is a known kernel, s(x1) is the observed signal, and
f (x2) is the desired unknown underlying probability distribution,
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referred to as the model. The terms, strue(x1) denotes the true signal
and e(x1) is the measurement noise, assumed to be white Gaussian
with the standard deviation, σe. Here, the inverse problem is solv-
ing for the unknown model, f (x2). An equivalent representation of
Eq. (13) in the matrix notation follows

s = K ⋅ f, (14)

where K ∈ Rm×n is a matrix, s ∈ Rm, f ∈ Rn are the column vectors,
andm and n are the sampling size of the vectors s and f, respectively.

A classical approach in solving the problem in Eq. (14) is
the ordinary least-squares (OLS) estimator, which solves for f by
minimizing the mean square error,

fOLS = argmin
f
( 1m∥K ⋅ f − s∥22), (15)

where ∥z∥2 = √∑i z2i denotes the !2-norm of vector z and fOLS is
the ordinary least-squares solution. Whenm = n and K is nonsingu-
lar, the solution to the OLS estimator has a closed-form expression,
given as K−1 ⋅ s. In practice, however, most problems suffer from a
near-singular and ill-conditioned kernel, where n ≫ m. In such a
situation, the OLS estimator in Eq. (15) is ill-posed because there
exist infinite least-squares solutions, and the solutions are unstable
in the presence of noise, i.e., a small perturbation in s, from the noise,
results in a massive fluctuation in the solution, fOLS.

A common approach in solving such ill-posed problems is to
employ a regularization45,55–59 method of the form

fg = argmin
f
( 1m∥K ⋅ f − s∥22 + g(f)), (16)

where g(f) is the regularization or the penalty function that stabi-
lizes the solution and fg is a regularized solution that satisfies the
criterion of the penalty function. In doing so, however, the solu-
tion becomes dependent on the regularization term, and choosing
a correct regularization, therefore, becomes crucial.

In this work, our objective is to determine the distribution of
the nuclear shielding tensor parameters from a 2D NMR measure-
ment correlating the isotropic with the anisotropic frequencies. In
choosing the penalty function, we consider the following—first, the
NMRmeasurement may suffer from a low signal-to-noise ratio and,
second, the probability distribution of the shielding tensors is likely
to be smooth with correlated amplitudes for amorphous materials
and sparse for crystalline materials. Therefore, our choice of the
penalty functions includes the Truncated Singular Value Decompo-
sition (TSVD) method, which suppresses the effect of noise in the
solution, and the Smooth Least Absolute Shrinkage and Selection
Operator (S-LASSO), a method that promotes both smoothness and
sparsity in the solution. Note, our choice of the penalty is based on
what we believe is best for describing the NMR tensor parameters
and does not suggest a unique penalty function.

1. TSVD regularized least-squares problem
The truncated singular value decomposition (TSVD) is a fre-

quently used regularization method57,60 in solving the ill-posed

linear-inverse problems. A singular value decomposition (SVD) of
the kernel K is

K = U ⋅ S ⋅VT , (17)

where the columns of U ∈ Rm×m, denoted as ui, and V ∈ Rn×n,
denoted as vi, form an orthonormal basis set of the left and right
singular vectors, respectively. The diagonal matrix, S ∈ Rm×n, con-
tains non-negative real singular values, Ϛi, arranged in the decreasing
order. The superscript T is the matrix transpose.

The singular value decomposition is a powerful method
because it is stable, regardless of the form of K, and the singular
values readily determine the ill-conditioned nature of the kernel. If
at least one singular value is zero, the kernel is singular with a rank
p, where p is the number of non-zero singular values. In this case,
there exists a non-trivial null space of K that is spanned by the last (n− p) columns ofV, denoted here byV0. Any arbitrary vector f0 from
the null space, f0 = c0 ⋅V0, where c0 is an arbitrary diagonal matrix,
will always satisfy the condition K ⋅ f0 = 0, and therefore, determin-
ing these vectors from the measurement, s, is not feasible. In such
cases, K is approximately expressed in a subspace, called the range
space, by truncating the singular values to the first p largest values,
following

K ≈ Up ⋅ Sp ⋅VT
p , (18)

where the columns of Up ∈ Rm×p and Vp ∈ Rn×p form the basis
vectors that span the range space ofK andKT , respectively. The diag-
onal square matrix Sp ∈ Rp×p contains the first p singular values. The
columns of Up and Vp are the first p columns of U and V, respec-
tively. In this case, the SVD solution to the problem in Eq. (14) has a
simple analytical form

f† = K† ⋅ s = Vp ⋅ S−1p ⋅UT
p ⋅ s = Vp ⋅ S−1p ⋅UT

p ⋅ (strue + e), (19)

where f† is the TSVD solution, K† is the pseudoinverse of K, and
Sp−1 is obtained by taking the inverse of all diagonal elements in Sp.
The above expression can be re-expressed as a linear combination of
the singular vectors, vi,

f† = p∑
i=1(

uTi ⋅ strue
Ϛi

)vi + p∑
i=1(

uTi ⋅ e
Ϛi
)vi. (20)

An interesting case arises when the singular values quickly decay to
zero. This happens when K is ill-conditioned. The term condition
number is defined as the ratio of the largest to the smallest singular
value of K in the range space,

cond(K) = Ϛ1
Ϛp
, (21)

and provides a maximum bound on the relative error in the solution,
f†, given a relative error in measurement. In Eq. (20), note that the
singular vectors, vi, corresponding to small singular values, Ϛi, con-
tribute massively to the solution f†, and therefore, any perturbations
arising from the noise e are amplified by these small singular values.
A kernel with a large condition number is, thus, more susceptible to
an unstable solution.
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To regularize the solution, the original ill-conditioned kernel,
K, is replaced with an approximate well-conditioned kernel through
the truncation of the singular values. If the first r < p largest singular
values are considered, then the reduced space approximate kernel
follows

KTSVD = Ur ⋅ Sr ⋅VT
r , (22)

where Ur ∈ Rm×r , Vr ∈ Rn×r , and Sr ∈ Rr×r are the truncated matri-
ces. In this case, the regularization parameter is (p − r). The index r
is chosen such that the condition number, (Ϛ1/Ϛr), of the truncated
kernel, KTSVD, is relatively small. In this study, we employ the max-
imum entropy-based criterion48 for selecting r (see Subsection 1 of
the Appendix for details).

The truncated singular value decomposition (TSVD)method is
very efficient in projecting the ordinary least-squares (OLS) problem
onto a smaller subspace,61 which dramatically reduces the computa-
tion time and resources, primarily when m is large. This process is
also referred to as data compression. Having determined the opti-
mal truncation index r < p, the linear problem in Eq. (14) can be
approximately re-defined on the reduced subspace following

s̃ = K̃ ⋅ f, (23)

where K̃ = Sr ⋅VT
r ∈ Rr×n is the “nearby” well-conditioned kernel and

s̃ = UT
r ⋅ s ∈ Rr is the compressed signal. Similarly, the regularized

least-squares estimator from Eq. (16) reformulates to

argmin
f
(1r ∥K̃ ⋅ f − s̃∥22 + g(f)). (24)

Note, here, we use r to calculate the mean square error (MSE) of the
reduced subspace problem.

2. Smooth-LASSO, S-LASSO
The Smooth Least Absolute Shrinkage and Selection Opera-

tor50 (S-LASSO) estimator in a variant of the Elastic-Net estimator49
in which the penalty function for a d-dimensional solution f is a
combination of the quadratic and LASSO penalties of form

g(f) = α
d∑
i=1 ∥Ji ⋅ f∥

2
2 + λ∥f∥1, (25)

where the first term is the quadratic penalty term that promotes a
smooth solution and the second term is the LASSO penalty term
that promotes sparsity in the solution. The multipliers, α > 0 and
λ > 0, are the regularization parameters that control the smoothness
and sparsity of the solution, respectively. They are also known as the
hyperparameters, and sometimes called the tuning parameters. The
notation ∥f∥1 =∑i|f i| denotes the !1-norm of f. The matrix, Ji, typ-
ically reflects some underlying geometry or the structure in the true
solution. Here, Ji is defined to promote smoothness along the ith
dimension of a d-dimensional solution f and is given as

Ji = In1 ⊗⋯⊗Ani ⊗⋯⊗ Ind , (26)

where Ini ∈ Rni×ni is an identity matrix,Ani is a first difference matrix
given by

Ani =
⎛⎜⎜⎜⎝
1 −1 0 ⋯ ⋮
0 1 −1 ⋯ ⋮⋮ ⋮ ⋮ ⋮ 0
0 ⋯ 0 1 −1

⎞⎟⎟⎟⎠
∈ R(ni−1)×ni , (27)

and the symbol ⊗ is the Kronecker product. The terms,(n1,n2, . . . ,nd), are the number of points along the solution dimen-
sions, with the constraint that∏d

i=1 ni = n. Note, the penalty function
in Eq. (25) reduces to the Elastic-Net penalty when Ji is the identity
matrix and further reduces to a LASSO penalty when α = 0.

In the case of a one-dimensional (d = 1) solution, i.e., when f is
a vector, the matrix

J1 = An1 ∈ R(n1−1)×n1 (28)

promotes a smooth solution by penalizing the squared difference
between the adjacent elements of the vector f. In the case of a two-
dimensional (d = 2) solution, e.g., when f is an image, the J1 and J2
matrices,

J1 = An1 ⊗ In2 ∈ R(n1−1)n2×n1n2 , (29)

J2 = In1 ⊗An2 ∈ R(n2−1)n1×n2n1 , (30)

promotes smoothness by penalizing the squared differences between
the adjacent elements of f along both dimensions.

The advantage of having a quadratic penalty term in Eq. (25) is
that it is easily integrable into the OLS term of Eq. (24) by defining
an augmented dataset,

Kd =
⎛⎜⎜⎜⎝

K̃√
rα J1⋮√
rα Jd

⎞⎟⎟⎟⎠
and sd =

⎛⎜⎜⎜⎝
s̃
0⋮
0

⎞⎟⎟⎟⎠
, (31)

where Kd is the augmented kernel, sd is the augmented signal, and
0 is a vector of zeros. Thereafter, the solution to the problem in
Eq. (24), with the penalty term given by Eq. (25), is equivalent
to solving the following LASSO problem62–71 over the augmented
dataset,

fg = argmin
f≥0 (

1
r ∥Kd ⋅ f − sd∥22 + λ∥f∥1). (32)

In this study, we solve for a two-dimensional solution, f, and
implement the LASSO estimator from the scikit-learn51,52 python
package with a non-negative constraint on f to solve Eq. (32). A
non-negative constraint is essential for representing a pragmatic
solution by ensuring that the probability of a tensor cannot be neg-
ative. In determining the optimum hyperparameters α∗ and λ∗, we
employ the ten-fold cross-validationmethod (see Subsection 2 of the
Appendix for further details).
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3. Role of the hyperparameters
In the TSVD-S-LASSO hybrid linear inversion method, there

are three hyperparameters, (p − r), α, and λ. The first hyperparam-
eter, (p − r), is the number of truncated singular values whose role
is to limit the effect of the measurement noise on the solution and
reduce the dimensionality of the problem. The hyperparameters α
and λ control the smoothness and sparsity of the solution. The role
of α and λ becomes fairly intuitive when we re-express Eq. (25) as

g(f) = a(b d∑
i=1 ∥Ji ⋅ f∥

2
2 + (1 − b)∥f∥1), (33)

where

a = α + λ and b = α/(α + λ). (34)

Here, the parameter a controls the amount of regularization used in
the inversion and the parameter b controls the relative amount of !1
and !2 contributions. Generally, the optimum value of a depends on
the noise standard deviation, i.e., greater noise leads to a larger a. A
larger value of b promotes a smooth and blurred solution, while a
smaller value promotes a sparse and sharp solution. The optimum
value of b will also depend on the 2D inversion grid interval (vide
infra), i.e., course grids tend to favor sparse solutions, while fine
grids tend to favor smooth solutions.

C. Practical challenges
1. Defining the 2D inversion grid

A common choice for representing a distribution of ζ and η
parameters is a 2D Cartesian grid where the coordinates ζ and η
span the orthogonal dimensions. As mentioned earlier, this coordi-
nate system can be problematic since η becomes undefined as ζ → 0;
this is indicated as black-filled circles in Fig. 1(a). Additionally, in the
case of the nuclear shielding interaction, the anisotropic line shapes
are invariant of the sign of ζ when η = 1, forming a degenerate sys-
tem of line shapes; this is depicted with colored circles in Fig. 1(a).
To overcome these issues, we adopt an approach similar to Czjzek72
by re-expressing the coordinates ζ and η in the first quadrant of a
polar coordinate system, (rζ , θ), where

rζ = ∣ζ∣ and θ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
π
4 η, ζ ≤ 0
π
2 (1 − η

2), ζ > 0.
(35)

We choose an x–y Cartesian grid over the r–θ polar grid because
Cartesian grids are more manageable for implementing the inver-
sion algorithm. It is given by

x = rζ cos θ and y = rζ sin θ, 0 ≥ θ ≥ π/2. (36)

As shown in Fig. 1(b), the magnitude of ζ forms the radial dimen-
sion, while η forms the angular dimension. The line |x| = |y| cor-
responds to η = 1. When progressing toward the x or y-axis from
this line, η uniformly decreases from 1 to 0, where η = 0 is along
the x or y-axis, depending on the sign of ζ. The undefined condition
for η when ζ → 0 is true, irrespective of the choice of the coordi-
nate system; however, this representation confines ζ = 0 to a single

FIG. 1. (a) A schematic representation of the ζ–η Cartesian grid system depict-
ing the undefined regions, shown in black circles, and redundant indistinguishable
regions, shown in colored circles, of the coordinate system. (b) The positive quad-
rant of the x–y grid. Here, the magnitude of ζ is the radial dimension, while η is
the angular dimension. The blue and red shading indicate the regions of positive
and negative ζ, respectively.

point, located at the origin. Additionally, since the positive and neg-
ative values of ζ correspond to the same (r, θ) coordinate when
η = 1, the x–y representation also removes the anisotropic line shape
degeneracy associated with the ζ–η grid.

In the x–y grid representation, the integral in Eq. (4) is
expressed as

s(ν∣δiso) = ∮
x,y

Kxy(ν, x, y)f (x, y∣δiso)∂x∂y, (37)

with the corresponding discretized approximation

s(ν∣δiso) ≈ n1−1∑
i=0

n2−1∑
j=0 Kxy(ν, xi, yj)f (xi, yj∣δiso)ΔxΔy, (38)

where n1, n2, and Δx, Δy are the number of points and incre-
ments along the x and y dimensions, respectively. The discretized
coordinates, (xi, yj), span a predefined grid of x and y coordinates,
respectively.
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FIG. 2. (a) In this illustration of the supersampling scheme, the square region
around each base grid cell coordinate, indicated by a bold circle, is sub-divided
into a 4 × 4 sub-grid. (b) The subspectrum at each sub-grid point, indicated by the
smaller circle, is averaged together to create (c) a basis subspectrum associated
with the corresponding base grid cell coordinate. Note, the base grid cells along
the axes are averaged over one-half of the cell area, except for the cell at the
origin, which is averaged over one-fourth of the cell area.

When determining the grid resolution, it is necessary to ensure
that the grid increments are sufficiently small such that the approxi-
mation in Eq. (38) remains valid. This requires a massive grid system
of basis subspectra—104–106 grid points—which can be computa-
tionally expensive. An alternative is to use a supersampling scheme,
illustrated in Fig. 2, in which each grid cell area is subsampled into
an nx × ny sub-grid, with sufficiently small sub-grid intervals chosen
to obtain a valid approximation of Eq. (37). The nx × ny subspectra,
associated with each point on a sub-grid, are then averaged together
to create the basis subspectrum associated with each grid cell.

2. Defining the kernel
While the probability distribution in Eq. (38),

f (xi, yj∣δiso) ∈ Rn1×n2 , is two-dimensional, when solving the linear
inverse problem in Eq. (16), f ∈ Rn, is required to be a vector. There-
fore, for all calculations, we define f as the row-major vectorization
of f (xi, yj|δiso), where the (c = jn1 + i)th element of f is f (xi, yj|δiso).
Similarly, the cth column of the matrix K is Kxy(ν, xi, yj) ∈ Rm and
holds the subspectrum corresponding to the coordinates (xi, yi).

Having determined the kernelK, all further operations are sub-
ject to the TSVDmethod, followed by smooth-LASSO optimization,
as described in Sec. II B. The optimum inverse solution f ∈ Rn1n2 is
then interpreted as an n1 × n2 matrix.

III. RESULTS AND DISCUSSION
A. Synthetic datasets

In this section and in the supplementary material, we examine
the inversion of synthetic purely anisotropic 1D spectra generated
from the known (ground truth) bivariate distributions of nuclear
shielding anisotropy parameters, i.e., f (x, y). Here, the term “purely
anisotropic spectrum” refers to situations where δ(cs)iso = 0 for every

subspectrum contributing to a spectrum, which is the case for the
anisotropic cross sections of the spectra from isotropic/anisotropic
correlation methods, such as 2D MAF, PASS, or MAT, either
as acquired or after an appropriate shear transformation is
applied.73–75 The anisotropic cross sections in 2D MAF are purely
anisotropic variable angle spinning (90○) spectra, and in the 2D
PASS or 2D MAT spectrum are purely anisotropic MAS sideband
spectra.

All NMR simulations presented here were performed for a 29Si
nuclide at 9.4 T using the python mrsimulator package.76 The syn-
thetic VAS (90○) spectra use 96 points spanning over 20 kHz and
spinning at 14 kHz. Except where indicated, the synthetic MAS side-
band spectra used up to 32 sideband orders with a MAS spinning
speed of 625 Hz.

1. Uni-modal distributions
Figure 3 depicts the results of the smooth-LASSO inversion

method on spectra obtained from four different ground truth uni-
modal distributions shown in the first column. On the top and
right of each ground truth distribution contour plot are the projec-
tions of the respective distribution onto the x and y coordinate axes,
respectively.

The ground truth distribution labeled U-1 is a bivariate normal
distribution generated in the x and y coordinates, with mean val-
ues of μx = 35 ppm and μy = 75 ppm, standard deviations of σx = 5
ppm and σy = 5 ppm, and a correlation coefficient of rxy = 0.12. The
ground truth distribution labeled U-2 in Fig. 3 is also a bivariate
normal distribution but generated in the ζ and η coordinates and
mapped onto the x and y grid. This distribution has mean values of
μζ = −75 ppm and μη = 0.5, standard deviations of σζ = 3.873 ppm,
ση = 0.173, and a correlation coefficient of rζ ,η = 0.

The ground truth distribution labeled U-3 is a Czjzek probabil-
ity distribution77,78 generated in the ζ and η coordinates using the
expression

p(c)(ζ,η) = ζ4η√
2πσ5c

(1 − η2

9 ) exp
⎧⎪⎪⎪⎨⎪⎪⎪⎩
− ζ

2(1 + η2
3 )

2σ2c

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (39)

with σc = 6.62 ppm, and mapped onto the x and y grids. The Czjzek
distribution—originally developed tomodel randomdistributions of
electric field gradients (EFGs) in glasses—is a model for anisotropic
line shapes arising from random deviations from a mean anisotropy
of zero. The Czjzek distribution assumes uncorrelated Gaussian dis-
tributions of second-rank spherical tensor components with a single
width parameter and gives the distribution of anisotropy parame-
ters, ζ and η. It is a valuable model for identifying anisotropic line
shapes arising from a random distribution of a second-rank NMR
tensors.

The ground truth distribution labeled U-4 is generated from
an extended Czjzek probability distribution, p(xc)(ζ, η), using the
numerical approach outlined by Le Caër et al.79 It has a mean
anisotropy of μζ = −25 ppm and a mean asymmetry of μη = 0.2 and
uses a perturbation factor of ε = 0.35.

In the second and fourth columns of Fig. 3 are the correspond-
ing synthetic VAS (90○) and MAS sideband spectra, respectively,
shown in black, obtained after adding Gaussian noise of σe = 0.005
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FIG. 3. Comparison of smooth-LASSO inversion of synthetic purely anisotropic spectra originating from four different unimodal bivariate shielding tensor distributions along
rows labeled U-1, U-2, U-3, and U-4. In the first column are the ground truth distributions along with 1D projections onto the coordinate axes. In the second and fourth columns
are the corresponding synthetic VAS (90○) spectrum and MAS sideband spectrum, respectively, with noise, σe = 0.005, along with the best fit spectrum shown in red. Above
each spectrum are the residuals. In the third and fifth columns are the corresponding inversion solutions for the shielding tensor distributions shown with histogram projections
onto the coordinate axes. The contours are drawn at every 10%.

to each spectrum simulated from its ground truth shielding tensor
distribution. The overlaid spectra, shown in red in the second and
fourth columns of Fig. 3, are the fits after the inversion with the
fit residuals shown in the plot above each spectrum. Note that the
synthetic VAS (90○) line shapes arising from a Czjzek distribution,
U-3 in Fig. 3, are Gaussian.

In order to obtain a realistic synthetic dataset, each ground
truth distribution is sampled over a high resolution (128 × 128) x–y

grid with a cell resolution of 0.942 × 0.942 ppm2. The inversion of
each synthetic anisotropic spectrum is carried out over a lower res-
olution (25 × 25) x–y grid, where each 4.65 × 4.65 ppm2 grid cell
(basis) subspectrum is created by supersampling on a 5 × 5 sub-
grid, as detailed in Fig. 2. In the third and fifth columns of Fig. 3 are
the contour plots of the best-fit model parameters, i.e., the nuclear
shielding tensor distributions, obtained from the smooth-LASSO
inversion of the corresponding synthetic VAS (90○) and MAS
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sideband spectra, respectively, with histograms on the top and right
showing the projection of the best-fit distribution onto the x and
y coordinate axes. Good agreement between the ground truth and
inverted distributions is obtained in all cases, as can be seen in both
the contour plots and the histogram projections.

While a cell-by-cell comparison of the ground truth and
inverted distributions cannot be made due to the differences in
sampling grid resolution, we can still quantify the inversion perfor-
mance by comparing themean and standard deviation of the ground
truth and inverted distributions, calculated in the x–y coordinates,
shown in Table S1 of the supplementary material. In the case of
U-1, the mean positions of the inverted distributions along both x
and y directions are within 0.5 ppm of the ground truth distribu-
tion. This is well within the inversion grid cell resolution and even
within the resolution of the sub-grid (0.93 ppm) used for supersam-
pling. The inverted distribution widths (standard deviations) along
the x and y directions are within 0.4 ppm of the ground truth dis-
tribution value of 5 ppm. In the U-2, U-3, and U-4 case, the mean
positions, standard deviations, and correlation coefficients of the
inverted distributions along the x and y directions are also in rea-
sonably good agreement with their corresponding ground truth dis-
tributions. While higher moment analyses could be used for a more
detailed comparison of the U-2, U-3, and U-4 distribution shapes,
these moments tend to be less useful as they are more susceptible to
noise.

2. Cross-validation and hyperparameters
The optimum hyperparameters, λ∗ and α∗, for each inversion

are determined by examining the cross-validation error metric from
the ten-fold cross-validation method on a 20 × 20 grid of prede-
fined λ and α values. Further details on the cross-validation tech-
nique are given in Subsection 2 of the Appendix. A total of 4000
solutions are assessed from which the model parameters with the
least cross-validation error are selected. Typical contour plots of the
cross-validation error, in the case of the inversion of the U-1 syn-
thetic VAS (90○) and MAS sideband spectra, are shown in Figs. 4(a)
and 4(b), respectively, with the optimum λ∗ and α∗ values marked
with an “x.” The optimum λ∗ and α∗ values from each inversion
are given in Table S2. Additionally, Table S2 of the supplemen-
tary material lists the alternative hyperparameters, a∗ and b∗, as
defined in Eq. (34). Recall that a reflects the amount of regularization
used in the inversion, while the hyperparameter b indicates the rel-
ative amount of !1 and !2 contributions. To illustrate these roles, we
examine, in the supplementary material, the smooth-LASSO inver-
sion method on spectra as a function of increasing noise standard
deviations and increasing width of the ground truth distribution.

3. Regularization comparisons
To highlight the performance improvement and need for the

smooth-LASSO model selection method, we inverted the synthetic
VAS (90○) spectrum generated from the U-1 distribution with noise
of σe = 0.005 and compared the results of (1) truncated singular value
decomposition, (2) !1 regularization, (3) elastic-net, and (4) smooth-
LASSO regularization approaches, as shown in the different rows of
Fig. 5. When comparing the performance of these different regular-
izationmethods, it is important to examine variations with changing
solution grid sizes, displayed at the top of each column in Fig. 5.

FIG. 4. The 20 × 20 α–λ hyperparameter grids displaying the contours of the
cross-validation error [see Eq. (A7) in Subsection 2 of the Appendix], resulting from
the ten-fold cross-validation for the inversion of (a) the synthetic VAS (90○) spec-
trum and (b) the MAS sideband spectrum, both generated from the U-1 ground
truth distribution in Fig. 3. The marker “x” designates the optimum λ∗ and α∗
values.

The first row shows the TSVD solutions corresponding to the
r = 40 largest singular values. Using only TSVD, regardless of the
grid resolution, leads to broad and unphysical distributions with
finite amplitudes extending over the entire solution grid as well as
unphysical negative solutions. The choice of r = 40 was arbitrary in
the sense that it was chosen to give best agreement to the ground
truth distribution. An “optimal” truncation index of r = 60 was
determined by the maximum entropy method but gave a noisy solu-
tion with little resemblance to the ground truth distribution. One
might expect similarly poor performance from ridge regression (also
known as Tikhonov regularization), as it also performs a weighted
reduction in the singular values.47

The second row shows the result of the !1-norm regularization
with a non-negative constraint on the solution. This type of regu-
larization is well known for promoting sparse solutions, which is
immediately obvious in comparison to TSVD solutions in Fig. 5. In
this case, cross-validation was performed to determine the hyper-
parameter controlling the amount of !1-norm regularization. These
values are available in Table S3 of the supplementary material. A
challenge with !1 regularization, however, is that its solutions can
become unreliable as the grid-resolution increases, as seen in the
columns going from left to right in Fig. 5.

The third row shows the result from an elastic net regu-
larization. As described in Sec. II B 2, this approach combines
!1-norm and !2-norm regularization with two hyperparameters
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FIG. 5. Comparison of the inversion results on a synthetic VAS (90○) spectrum generated from the U-1 distribution with the noise of σe = 0.005 using (a) truncated singular
value decomposition, (b) !1 regularization, (c) elastic-net, and (d) smooth-LASSO. From left to right, the columns represent solutions with increasing grid sizes of 20 × 20,
30 × 30, 40 × 40, and 50 × 50 displayed above each column. The TSVD solutions use the first 40 largest singular values. The contours are drawn at 5% for data in the first
row and at 10% for the second, third, and fourth rows.

determining their respective weights. The difference between elas-
tic net and the smooth-LASSO regularization is that the former
employs no smoothing of the solution, i.e., the Ji in the penalty func-
tion, Eq. (25), are identity matrices. Compared to !1 regularization,
the elastic net provides a more consistent inversion onto the various
grid-resolutions.

Finally, the results in the fourth row are from the smooth-
LASSO regularization. Like the elastic net, a consistent inversion
solution is seen across different grid resolutions. For the most part,

the elastic net and smooth-LASSO act in the same way as seen
in their respective inversion results. An additional feature of the
smooth-LASSO is the use of the first-difference matrix, i.e., Eq. (27),
which promotes a smooth solution. This smoothness penalty sup-
presses any isolated spike in the solution amplitudes that may
result from the noise in the spectrum. This can be seen by not-
ing that the extraneous small signal around x ≈ 2 ppm and y ≈ 40
ppm in the elastic net solution is suppressed in the smooth-LASSO
solution.
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4. Dependence on MAS speed

As mentioned earlier, the MAS sideband basis subspectra
become less distinguishable with increasing MAS rotor speeds, and
we can expect greater uncertainty in the determined tensor param-
eter distribution. This is illustrated in Fig. 6 with a comparison of
smooth-LASSO inversion on synthetic MAS sideband spectra as a
function of rotor frequency or equivalently the number of side-
bands. The corresponding optimum inversion hyperparameters are
given in Table S3 of the supplementary material. The spectra in

the first and third columns are generated from the U-1 distribution
(μζ of 6.6 kHz or 82.8 ppm) with noise of σe = 0.0001 using a range
of rotor frequencies from 1.1875 Hz to 8 kHz. The corresponding
inversion results, depicted in the second and fourth columns, show
that the ground truth distribution can be reliably reconstructed from
the spinning sideband spectrum as long as the number of sidebands
is 12 or higher. Less than 12 sidebands and our results show that the
information loss is considerable for a complete reconstruction of the
ground truth distribution—a finding consistent with Hodgkinson
and Emsley.80 As also expected, the rank deficiency of the inversion

FIG. 6. Comparison of smooth-LASSO inversions, shown in second and fourth columns, on synthetic MAS sideband spectra, shown in the first and third columns, generated
from the U-1 distribution with noise of σe = 0.0001 as a function of rotor frequency or equivalently the number of sidebands. The best fit spectra are shown in red. Rotor
frequencies are (a) 1.1875 kHz, (b) 1.375 kHz, (c) 1.5625 kHz, (d) 2 kHz, (e) 2.5 kHz, (f) 3 kHz, (g) 4 kHz, and (h) 8 kHz. The number of sidebands, Nsb, displayed on the
top-right corner of the spectrum, is calculated from the resulting spectrum as the number of points with amplitude greater than 6σe = 0.0006.
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kernel increases with increasing rotor frequency, causing a steady
drop in the optimal truncation index, r, from a maximum possible
value of r = 32 to r = 31 at rotor frequency of 1.1875 kHz to a value
of r = 12 at 8 kHz (see Table S3 of the supplementary material).

B. Experimental 29Si NMR datasets
In silicate networks there are five types of SiO4 tetrahedra,

each characterized by their connectivity, i.e., the number of oxygen
atoms that are corner-linked to other tetrahedra.81,82 These are des-
ignated with the notation Qn, where n(∼0–4) represents the number
of bridging oxygen per tetrahedron. Quantifying the populations of
Qn species in a silicate glass and their degrees of connectivity can
provide considerable insight into the structure of glass83,84 as well
as physical properties,85–91 such as the glass transition temperature,
viscosity, mechanical properties, and ionic (modifier) transport.

Under high-speed MAS conditions where anisotropic broad-
ening (i.e., information on ζ and η) is removed, those five structural
units can only be identified by their isotropic position, δ(cs)iso , which
reflects the mean silicon environment and ranges from approxi-
mately −70 ppm for Q0 to −110 ppm for Q4 with some consider-
able overlap.92 In the majority of NMR studies of network forming
glasses, where high-speedMAS spectra contain a number of resolved
“resonances,” spectroscopists focus almost entirely on using MAS
spectra to identify and quantify populations of polyhedral units and
polyhedral linkages.93 By referring to “resonances” in quotes, we are
highlighting the fact that these resolved “resonances” are inhomo-
geneously broadened, that is, inside each “resonance” is a mix of
homogeneous resonances (subspectra) from numerous structurally
distinct sites.

Under static conditions, off-magic-angle spinning, or slow
MAS, eachQn site exhibits a characteristic anisotropic 29Si NMR line
shape from the magnetic shielding originating from the anisotropic
electron cloud surrounding the nucleus.94,95 Thus, the shielding ten-
sor can reveal the nature and directionality of the bonding, with ζ
measuring the extent of the electron cloud distortion and η express-
ing the departure from a cylindrically symmetric environment
[η = 0 (symmetric) → 1 (asymmetric)]. The Q0 and Q4 sites have
the smallest anisotropy due to their highly symmetric tetrahedral
environment. The remaining sites have ζ values of relatively larger

magnitude, with Q3 and Q1 sites having low asymmetry parameters
reflecting an environment close to axial symmetry and positive and
negative signs of ζ, respectively, andwithQ2 site having intermediate
asymmetry parameters.

As mentioned earlier, numerous NMR methods exist for
obtaining a 2D spectrum correlating isotropic and anisotropic fre-
quencies. In this section, we perform smooth-LASSO inversions
on experimental 2D spectra, previously published in the 2D MAF
and 2D MAT 29Si studies of silicate glasses,73–75,96,97 to obtain the
3D distributions of 29Si shielding tensor principal components for
the Qn sites. For all 2D spectra presented in this section, an active
shear44,97 is applied to obtain signal correlating pure isotropic and
anisotropic dimensions, leaving all anisotropic cross sections cen-
tered at 0 Hz. For the inversion of these 2D spectra, the kernel,
K ∈ Rm×n, is the same as before, but now the signal in Eq. (14) is
two-dimensional, s ∈ Rm×miso , where miso is the number of isotropic
cross sections. Computational details for the smooth-LASSO inver-
sion of each experimental 2D spectrum in this section are given in
Table I.

The first set of experimental examples, shown in the first
column of Fig. 7, are three 29Si 2D MAF spectra for the sili-
cate glass compositions Cs2O ⋅ 4.72SiO2, obtained by Jardón-Álvarez
et al.,75 and Na2O ⋅ 4.74SiO2 and Rb2O ⋅ 2.25SiO2, obtained by
Baltisberger et al.74 Applying the smooth-LASSO inversion to each
1D anisotropic cross section along the isotropic dimension gives the
3D distributions of shielding tensor parameters for the correspond-
ing 2D spectra shown in the second column of Fig. 7. The contours of
the 2D projections from this 3D distribution onto the axes are shown
along the face normal to the axis of projection. Similarly, the 1D pro-
jections from the respective 2D projections are shown on top of the
respective 2D projection planes. Below each 2D spectrum in the first
column is the best fit residuals obtained with its inversion solution.
As shown in Fig. 7, the inversions yield bi-modal 3D tensor param-
eter distributions for all three 2D spectra. The distribution modes
near the origin in x–y are assigned to the Q4 sites. This assignment
is also consistent with their projection onto the isotropic chemical
shift dimension, appearing in the −100 ppm to −110 ppm range.
The projections of this mode onto the x–y plane are also consis-
tent with a Czjzek distribution, as expected for Q4 sites with random
structural variations away from a highly symmetric local structure

TABLE I. Computational details for smooth-LASSO inversion of experimental MAF and MAT spectra. The standard deviation of the measurement noise is σe. All inversions
are performed on an x–y solution grid with the indicated size and resolution using a 5 × 5 sub-grid supersampling scheme. The optimum singular value truncation index, r, is
determined from the maximum entropy method48 (briefly described in Appendix). The optimum hyperparameters, α∗ and λ∗, are determined over a 20 × 20 α–λ grid using the
cross-validation error metric from the ten-fold cross-validation method. The signal to noise ratio is the reciprocal of σe.

Measurement Inversion Cross-validation

Sample σe Kernel Grid size Grid resolution (ppm2) r α∗/10−6 λ∗/10−6 a∗/10−6 b∗

Cs2O ⋅ 4.72SiO2 0.002 MAF 25× 25 5.66× 5.66 98 0.834 0.616 1.45 0.58
Na2O ⋅ 4.74SiO2 0.003 MAF 25× 25 5.03× 5.03 87 0.207 3.79 4.0 0.05
Rb2O ⋅ 2.25SiO2 0.0045 MAF 25× 25 5.03× 5.03 88 0.886 3.79 4.68 0.19
MgO ⋅ SiO2 0.015 MAF 28× 28 5.03× 5.03 63 119.9 4.55 124.5 0.96
CaO ⋅ SiO2 0.0012 MAF 25× 25 5.03× 5.03 45 28.0 8.86 36.8 0.76
KMg0.5O ⋅ 4SiO2 0.0007 MAT 25× 25 4.65× 4.65 31 3.79 11.1 15.1 0.25
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FIG. 7. Smooth-LASSO inversions of the 29Si 2D MAF spectra for the Cs2O ⋅ 4.72SiO2, Na2O ⋅ 4.74SiO2, and Rb2O ⋅ 2.25SiO2 glasses,74,75 ordered from top to bottom, into
the corresponding tri-variate tensor parameter distribution. In the 1st column are the 2D MAF spectra of silicate glass (top) and the corresponding residuals from the best fit
(bottom). In the second column are the corresponding inversion solutions for the shielding tensor distributions. The contours of the 2D projections from this 3D distribution
onto the axes are shown along the face normal to the axis of projection. Similarly, the 1D projections from the respective 2D projections are shown on top of the respective
2D projection planes. The third column is similar to the second, except the individual distributions for the Q4 and Q3 sites are highlighted in red and blue colors, respectively.
The contours of the 2D projections are drawn at 5%.

with a mean anisotropy of ζ = 0. The distribution modes at a posi-
tion shifted further away from the x–y origin are assigned to the Q3

sites. This assignment is again consistent with their projection onto
the isotropic chemical shift dimension, appearing in the −100 ppm

to −90 ppm range. The well-separated Q4 and Q3 distribution
modes can be isolated within rectangular cuboids and are high-
lighted in red and blue colors, respectively, in the third column of
Fig. 7.
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FIG. 8. Smooth-LASSO inversion of the 29Si 2D MAT-PIETA spectra of the KMg0.5O ⋅ 4SiO2 glass73 into the corresponding tri-variate tensor parameter distribution. The
spectrum was acquired at a MAS speed of 790 Hz. On the left is the 2D spectrum (top) and the corresponding residuals from the best fit (bottom). In the middle is
the corresponding inversion solution for the shielding tensor distribution. The contours of the 2D projections from this 3D distribution onto the axes are shown along
the face normal to the axis of projection. Similarly, the 1D projections from the respective 2D projections are shown on top of the respective 2D projection planes. The
distribution on the right is similar to the middle, except the Q4 and Q3 distributions are highlighted in red and blue colors, respectively. The contours of the 2D projections are
drawn at 5%.

Another example, shown in the first column of Fig. 8, is the
29Si 2D MAT-PIETA spectrum for the silicate glass composition
KMg0.5O ⋅ SiO2, obtained by Walder et al.73 In this 2D spectrum,
the anisotropic cross sections are MAS sideband spectra acquired
at a spin rate of 790 Hz. This speed produces a sufficient number
of sideband amplitudes across the Q3 and Q4 regions, ∼14 and ∼5,
respectively, for obtaining the distribution of anisotropy parame-
ters. As before, applying the smooth-LASSO inversion to each 1D
anisotropic cross section along the isotropic dimension gives the
3D distribution of shielding tensor parameters shown in the sec-
ond column of Fig. 8 along with 2D and 1D projections onto the
corresponding planes and axes. Similarly, below the 2D spectrum is

the best fit residuals obtained with the inversion solution. For this
glass composition, the inversion of the 2D spectrum also yields a bi-
modal distribution, with the well-separated mode near the x–y ori-
gin assigned to the Q4 sites and mode shifted further away from the
x–y origin assigned to the Q3 sites. The shapes of the Q4 and Q3 dis-
tributions are similar to those shown in Fig. 7. The well-separated Q4

and Q3 distribution modes, isolated within rectangular cuboids, are
highlighted in red and blue colors, respectively, in the third column
of Fig. 8.

The results of a moment analysis on the isolated Q4 and Q3

distribution modes shown in Figs. 7 and 8 are given in Table II.
Also shown in Table II are the results from the previously published

TABLE II. Moment analysis up to the second moment of the isolated Q4 and Q3 distribution modes obtained from the smooth-LASSO inversion of the 29Si 2D NMR spectra
shown in Figs. 7 and 8. The values for the isotropic chemical shift δiso, x, and y are reported as the mean ± standard deviation for the distribution modes. The previously
determined isotropic chemical shift values δiso are also the mean ± standard deviation for the distribution modes. In previous work, only the distribution mean values ζ and η
could be determined.

Q4 statistics from inversion (this work) Q4 statistics from previous work

Composition % δiso (ppm) x (ppm) y (ppm) % δiso (ppm) References

Cs2O ⋅ 4.72SiO2 59.23 −104.5 ± 5.4 9.6 ± 6.4 10.9 ± 6.9 57.7 ± 0.4 −104.7 ± 5.2 75
Na2O ⋅ 4.74SiO2 60.46 −103.7 ± 5.4 8.5 ± 4.8 9.0 ± 4.9 57.8 ± 0.1 −103.7 ± 5.31 74
Rb2O ⋅ 2.25SiO2 11.87 −98.0 ± 5.4 8.2 ± 4.3 8.8 ± 4.4 11.0 ± 0.3 −98.0 ± 5.64 74
KMg0.5O ⋅ 4SiO2 55.53 −107.3 ± 5.5 8.7 ± 4.6 9.0 ± 4.8 Not analyzed 73

Q3 statistics from inversion (this work) Q3 statistics from previous work

Composition % δiso (ppm) x (ppm) y (ppm) ζ (ppm) η % δiso (ppm) ζ (ppm) η References

Cs2O ⋅ 4.72SiO2 40.77 −96.1 ± 3.9 11.0 ± 7.2 87.7 ± 9.9 88.4 0.16 42.3 ± 0.4 −96.1 ± 4.0 89.0 0 75
Na2O ⋅ 4.74SiO2 39.54 −90.6 ± 4.3 10.2 ± 6.1 79.1 ± 7.8 79.8 0.16 42.2 ± 0.2 −90.5 ± 4.29 79.8 0 74
Rb2O ⋅ 2.25SiO2 88.13 −88.9 ± 4.4 10.1 ± 6.5 79.9 ± 8.1 80.5 0.16 89.0 ± 0.1 −89.5 ± 4.65 80.7 0 74
KMg0.5O ⋅ 4SiO2 44.47 −97.0 ± 4.8 9.8 ± 4.4 62.5 ± 10.7 63.3 0.20 Not analyzed 73
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spectral analysis74,75 carried out using a forward non-linear least-
squares approach where an ad hoc Gaussian line shape convolution
was applied to the anisotropic cross sections to model the structural
disorder around the Qn sites. In these earlier constrained analyses,
the ζ and η values were assumed to be zero for the Q4 sites, and
the mean ζ values were determined for the Q3 sites with an assump-
tion of η = 0. As listed in Table II, the Q3 and Q4 populations, the
mean and standard deviation of the Q3 and Q4 isotropic chemical
shift distributions are in good agreement with the previously pub-
lished spectral analyses.74,75 While there is also good agreement with
the previously published mean ζ value for Q3, the inversion gives
the non-zero mean values for η in contrast to the assumed value
of η = 0 in the previous analyses. Additionally, it should be noted
that the model-free inverse approach can yield a more accurate
Qn population as the model constraints in the forward non-linear
least-squares approach generally lead to larger residuals and more
systematic biases in quantifying integrated intensities. Most impor-
tantly, the overly restrictive assumptions on the anisotropy param-
eters for both Q3 and Q4 sites in these earlier works are eliminated
in the smooth-LASSO inversion analysis. This creates new oppor-
tunities for more detailed analyses of the distribution of anisotropy
parameters.

In Fig. 9 is a comparison of the bi-variate distributions of
isotropic chemical shift, δ(cs)iso , and nuclear shielding anisotropy, ζ.
These distributions are obtained by projecting out the asymme-
try parameter dependence of the 3D tensor parameter distributions
from the smooth-LASSO inversions of the 29Si 2D NMR spectra
shown in Figs. 7 and 8. The near-symmetric pair of peaks about ζ = 0
occurring at the more negative isotropic chemical shifts are assigned
to the Q4 sites. The lower silica content in the Rb2O ⋅ 2.25SiO2 glass
composition is reflected in the significantly lower Q4 distribution
intensity. While it is often the first coordination sphere geometry
that determines the second-rank anisotropy, there are situations
where the mean first coordination sphere geometry has a symme-
try that leads to no anisotropy. Such is the case with the tetrahedral
symmetry around 29Si in Q4 (and also Q0) sites. Thus, the origin of
this near-symmetric pair of peaks in 29Si shielding anisotropy for Q4

likely arises from random structural deviations away from this high
symmetry in the first-coordination sphere of silicon. Again, this type
of ζ distribution is consistent with the Czjzek distribution. As noted
earlier, the synthetic VAS (90○) line shape arising from a Czjzek dis-
tribution is Gaussian. For this reason, Baltisberger et al.74 modeled
the anisotropic 29Si line shape of the Q4 sites in MAF spectra with a
Gaussian line shape. They found that this anisotropic Gaussian line
width increases with increasing isotropic chemical shift. Close exam-
ination of the Q4 distributions in Fig. 9 also reveals an increase in
the ζ distribution width when moving toward less negative isotropic
chemical shifts, δ(cs)iso , in agreement with this earlier observation.
Baltisberger et al.74 explained this increasing width by assigning the
narrowest anisotropic cross sections at the most negative chemical
shifts to Q4,4444 sites and the increasingly wider anisotropic cross
sections at less negative chemical shits to Q4 sites in anionic clusters
with Q3, such as Q4,4443, Q4,4433, Q4,4333, and Q4,3333. Here, the nota-
tion Q4,4444 represents a Q4 unit connected to four other Q4 units, as
in silica glass SiO2, while Q4,4333 represents a Q4 unit connected to
one Q4 units and three Q3.

The widths of the ζ distribution for Q4 in the Na2O ⋅ 4.74SiO2
and KMg0.5O ⋅ 4SiO2 glass compositions are narrower than in the

FIG. 9. Comparison of the bi-variate distributions of isotropic chemical shift, δ(cs)iso ,
and nuclear shielding anisotropy, ζ, obtained by projecting out the η dependence
of the 3D distributions from the smooth-LASSO inversions of the 29Si 2D NMR
spectra shown in Figs. 7 and 8.
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Cs2O ⋅ 4.72SiO2 glass. This can be similarly explained with the com-
monly accepted view that the Na+ and Mg2+, with a higher cation
potential, i.e., higher charge to radius ratio (Z/r), tend to cluster
and lead to more silica-rich, i.e., Q4,4444, regions, thus leading to
the narrower ζ distributions. Overall, these results represent the first
quantification of the distribution of 29Si shielding anisotropy for Q4

sites in a silicate glass and suggest possible correlations with struc-
tural features such as depolymerization of the network and modifier
cation potential.

The Q3 modes in Fig. 9 occur at the lower negative isotropic
chemical shifts and at the larger positive-only values of ζ. While the
Q3 distribution shapes also reveal slight correlations between ζ and
isotropic chemical shifts—most noticeable in the Na2O ⋅ 4.74SiO2
and Rb2O ⋅ 2.25SiO2 glasses—it is difficult to speculate on the ori-
gin of these correlations without further investigations. Projecting
out the isotropic chemical shift gives the 1D ζ distributions for
the Q3 sites in the four silicate glass compositions shown together
in Fig. 10. Baltisberger et al.74 found that the mean Q3 shielding
anisotropy was linearly dependent on the silicon–non-bridging oxy-
gen (NBO) bond length with decreasing anisotropy as the Si–NBO
bond lengthened. Furthermore, they found that the Si–NBO bond
length, in turn, is linearly dependent on the cation potential and
the number of coordinating modifier cations. That is, both higher
cation potentials and high modifier cation coordination lead to
longer Si–NBO bond lengths. This linear dependence of the shield-
ing anisotropy on the Si–NBO length is well known and dates back
to work by Grimmer and co-workers94,95 in the early 1980s and sim-
ilarly confirmed by Kirkpatrick and co-workers98,99 in phosphate
glasses.

Jardón-Álvarez et al.75 proposed an approximate expression for
the variations in the mean Q3 nuclear shielding ζ values given by

ζ ≈ m(⟨dSi–BO⟩ − ⟨dSi–NBO⟩), (40)

where ⟨dSi–BO⟩ and ⟨dSi–NBO⟩ are the mean Si–O lengths involving
the bridging (BO) and non-bridging oxygen on a Q3, respectively. A
Si–O length typically varies from ∼1.50 Å to ∼1.60 Å in going from

FIG. 10. A comparison of the distributions of the Q3 anisotropy parameter, ζ, from
the smooth-LASSO inversion of the 29Si 2D NMR spectra shown in Figs. 7 and 8.
Each Q3 distribution has been normalized to the unit area.

Si–NBO to Si–BO. Assuming ⟨dSi–BO⟩ to be 1.60 Å, they obtained
an approximate slope of m = 1500 ppm/Å. Using Eq. (40), we can
approximately map the ζ distribution obtained from the smooth-
LASSO inversion into the full distribution of Q3 Si–NBO bond
lengths, dSi–NBO, as shown along the top of the plot in Fig. 10. Each
distribution peaks at a bond length consistent with known variations
with composition.74 That is, the observed ordering in the Si–NBO
bond length peaks, from shortest to longest, is a result of increasing
network modifier cation potential and increasing coordination of
the NBO by modifier cations. Cesium, with the lowest cation poten-
tial, results in the shortest mean Si–NBO bond length, shifting the ζ
distribution toward larger values. The broader ζ distribution in the
cesium silicate glass is also a result of its low cation potential, which
leads to a more random distribution of cesium cations in the glass,
i.e., a greater variation in cesium coordination numbers around non-
bridging oxygen,75 and hence a larger distribution of Si–NBO bond
lengths. While rubidium has a lower cation potential than sodium,
similar mean Si–NBO bond lengths in the rubidium and sodium sili-
cate glasses arise from a higher NBO coordination by rubidium than
sodium—a simple consequence of the higher rubidium content in
the glass composition. The high cation potential of Mg2+ leads to the
longer Si–NBO bond lengths in the KMg0.5O ⋅ 4SiO2 glass, shifting
the ζ distribution toward smaller values. One might be tempted to
interpret the broader distribution of ζ as a broader distribution in
Si–NBO bond lengths. One could even further suggest that such
a broad Si–NBO bond length distribution is a result of a variety
of potassium and magnesium modifier coordination environments
around the non-bridging oxygen. This explanation, however, is at
odds with an earlier 17O DAS study84 on this same composition,
which suggests a high degree of ordering of K and Mg around the
non-bridging oxygen. Instead, we believe that the broader distri-
bution of ζ in the KMg0.5O ⋅ 4SiO2 glass arises from greater dis-
tortions of the SiO4 tetrahedra, in this case the Q3 sites, caused by
the stronger oxygen coordination requirements aroundMg2+. Thus,
while Eq. (40) appears to be a reasonable model for interpreting the
mean ζ in terms of the difference in mean distances, ⟨dSi–BO⟩ and⟨dSi–NBO⟩, some care must be taken in using it to interpret the ζ
distribution width.

In Fig. 11 are the final experimental examples: the 29Si 2D
MAF spectra of CaO ⋅ SiO2 glass, obtained by Zhang et al.,96 and
MgO ⋅ SiO2 glass, obtained by Davis et al.97 These two spectra have
less discernible features than the previously discussed 2D spectra of
alkali silicate glasses for reasons mainly attributable to the higher
cation potentials of the network modifying cations, Ca2+ and Mg2+.
While Q2 is the predominant anionic species present in both glass
compositions, the higher cation potentials of the alkaline earth Ca2+
and Mg2+ cations lead to an increase in the disproportionation
reactions

2Qn ⇌ Qn−1 + Qn+1 (41)

and

2Q0 ⇌ 2Q1 + O2− (42)

in the melt from which the glass was formed and therefore more dis-
order in the types of anionic species present in the glass.96,97,100,101
Thus, compared to the previously discussed alkali silicate glass spec-
tra, we observe a wider range of isotropic 29Si chemical shifts due
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FIG. 11. Smooth-LASSO inversions of
the 29Si 2D MAF spectra96,97 for the (a)
CaO ⋅ SiO2 and (c) MgO ⋅ SiO2 glasses,
into the corresponding tri-variate tensor
parameter distribution. In (a) and (c) are
the 2D MAF spectra of silicate glass (top)
and the corresponding residuals from the
best fit (bottom). In (b) and (d) are the
corresponding inversion solutions for the
shielding tensor distributions. The con-
tours of the 2D projections from this
3D distribution onto the axes are shown
along the face normal to the axis of
projection. Similarly, the 1D projections
from the respective 2D projections are
shown on top of the respective 2D pro-
jection planes. The contours of the 2D
projections are drawn at 5%.

to the presence of all five possible Qn environments. This anionic
species disorder is even greater for Mg2+ than Ca2+ given its rela-
tively higher cation potential, and this is also reflected in the cor-
responding larger isotropic line width of the MgO ⋅ SiO2 spectrum
in Fig. 11. As the high cation potentials of Ca2+ and Mg2+ lead to
Si–NBO bonds approaching Si–BO bond lengths, there is a system-
atic drop in the magnitude of the mean 29Si shielding anisotropy,
ζ, for the Q1, Q2, and Q3 sites.96,97 The effect is less for Ca2+ than
Mg2+ given its relatively lower cation potential. For this reason, it is
somewhat easier to discern the variations in the slightly larger Qn

anisotropic line shapes in the CaO ⋅ SiO2 spectrum in Fig. 11 with
changing isotropic chemical shift. Finally, the stronger oxygen coor-
dination requirement around Ca2+ and, even more so for Mg2+, is
expected to lead to greater intra-tetrahedral distortions of the SiO4,
and overall broader distributions of shielding tensor parameters for
all Qn sites.

Applying the smooth-LASSO inversion to each 1D anisotropic
cross section along the isotropic dimension gives the 3D distribu-
tion of shielding tensor parameters shown in Figs. 11(b) and 11(d)
along with 2D and 1D projections onto the corresponding planes
and axes. Similarly, below the 2D spectrum is the best fit residuals
obtained with the inversion solution. While we know the underlying
Qn tensor parameter distributions for these spectra are multi-modal,
with modes associated with each of the five possible Qn environ-
ments, we expect the various modes to separate along the isotropic
dimension such that the inversion of a given 1D anisotropic cross
section yields primarily a unimodal or bimodal distribution. To a
certain degree, this is observed in the smooth-LASSO inversion of

both the CaO ⋅ SiO2 and MgO ⋅ SiO2 spectra; however, as one can
see in Figs. 11(b) and 11(d), the individual distribution modes are
strongly overlapping—although the situation is slightly better in the
CaO ⋅ SiO2 case due to its larger and more discernible anisotropic
line shapes. Unfortunately, given the extent of overlapping distribu-
tions, any statistical analysis of individual Qn distribution modes in
these two spectra would require additional modeling and is beyond
the scope of this work.

On the left in Figs. 12 and 13 are the bi-variate distributions
of isotropic chemical shift, δ(cs)iso , and nuclear shielding anisotropy,
ζ, obtained by projecting out the η dependence of the 3D distri-
butions from the smooth-LASSO inversions of the 29Si 2D NMR
spectra shown in Fig. 11, respectively. On the right in Figs. 12 and
13 are five x–y cross sections from the smooth-LASSO inversion,
labeled (a)–(e), taken at isotropic chemical shifts corresponding to
the approximately most probable Q4, Q3, Q2, Q1, and Q0 regions,
respectively. Overlaid on each of the five x–y cross sections from
the smooth-LASSO inversion is a small white circular marker whose
position corresponds to the previously reported mean ζ and η val-
ues. These were obtained using a forward non-linear least-squares
approach with an ad hoc Gaussian line shape convolution applied
to the anisotropic cross sections to model the structural disorder
around the Qn sites. Again, in these earlier analyses, the ζ and η
values were assumed to be zero for the Q4 and Q0 sites along with
sample-specific constraints for the mean ζ and η values of the other
Qn sites.96,97

The stronger mode intensity of all Qn inversion cross sections
relative to the Q2 cross section in the MgO ⋅ SiO2 vs the CaO ⋅ SiO2
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FIG. 12. On the left is the bi-variate distribution of isotropic chemical shift, δ(cs)iso , and nuclear shielding anisotropy, ζ, in CaO ⋅ SiO2 glass obtained by projecting out the η
dependence of the 3D distributions from the smooth-LASSO inversions of the 29Si NMR spectra shown in Fig. 11. On the right are five smooth-LASSO inversion x–y cross
sections, labeled (a)–(e), taken at isotropic chemical shifts corresponding to the approximately most probable Q4, Q3, Q2, Q1, and Q0 regions, respectively. The white circular
marking over the distributions is the reported values for the corresponding label site. The contours are drawn at every 10%.

case is consistent with the expected increased disproportionation of
anionic species. Furthermore, the widths of the distribution in the
x–y cross sections are greater for Q3, Q2, and Q1 inMgO ⋅ SiO2 com-
pared to CaO ⋅ SiO2. Again, this is as expected based on the increased
intra-tetrahedral distortions induced by the higher cation potential
of Mg2+.

Unrelated to the glass structural chemistry, a possible factor
contributing to the broad overlapping Qn tensor parameter distri-
butions in these particular samples, unlike those in Figs. 7 and 8,
is that both samples are made from SiO2 that was highly enriched
(>95%) in 29Si. The homonuclear 29Si dipolar couplings in these
samples, particularly at low external magnetic field strengths, lead to
an increased spectral broadening of the anisotropic cross sections. It
is far from trivial to expand the kernel subspectral basis to include
the variation due to these homonuclear 29Si dipolar couplings. Thus,
the inversion of these spectra, using a kernel intended only for mod-
eling the spectra of dilute spin 1/2 nuclei, i.e., not accounting for
broadenings from dipolar couplings or finite transition lifetimes, will
be biased toward broader solutions.

We close this section by noting that the inversion kernel of sub-
spectra assumes an ideal response free from artifacts, i.e., an undis-
torted pure absorption-mode spectrum with no convolution from

signal truncations due to delayed acquisition or insufficient acqui-
sition lengths. For example, while many 2D isotropic/anisotropic
correlation methods can benefit from the higher sensitivity obtained
with echo train acquisition methods, signal artifacts are introduced
if there is signal truncation due to the finite acquisition time between
π pulses. Additional signal artifacts may be introduced if the π pulse
spacing is not synchronous with the sample rotation rate. In some
cases, the kernel of subspectra can incorporate certain systematic
distortions, e.g., receiver dead times or echo train finite acquisition
time windows, and reduce some broadening of the inversion solu-
tion due to these artifacts. Each 2D isotropic/anisotropic correlation
method may also have its own specific artifacts that need to be sup-
pressed or, if possible, incorporated into the inversion kernel. For
MAS sideband spectra, the experimental spinning speed must be
accurately known and stable throughout the measurement. In the
magic-angle flipping technique, a high enough rotor speed is needed
to make sure the spectrum is sideband free. Additionally, if there is
a difference in the external magnetic field strength, then the pure
anisotropic dimension obtained after shearing the 2D MAF spec-
trum may still include a small isotropic component. This issue can
be corrected by recording the difference in the field strength at the
two angles and correcting the shearedMAF dataset using this value.
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FIG. 13. On the left is the bi-variate distribution of isotropic chemical shift, δ(cs)iso , and nuclear shielding anisotropy, ζ, in MgO ⋅ SiO2 glass obtained by projecting out the η
dependence of the 3D distributions from the smooth-LASSO inversions of the 29Si NMR spectra shown in Fig. 11. On the right are five smooth-LASSO inversion x–y cross
sections, labeled (a)-(e), taken at isotropic chemical shifts corresponding to the approximately most probable Q4, Q3, Q2, Q1, and Q0 regions, respectively. The white circular
marking over the distributions is the reported values for the corresponding label site. The contours are drawn at every 10%.

IV. SUMMARY

In this work, we have shown that the linear inversion of a
pure anisotropic spectrum into a two-dimensional distribution of
the second-rank nuclear shielding tensor anisotropy parameters can
be successfully performed using the Smooth Least Absolute Shrink-
age and Selection Operator50 (S-LASSO) estimator, a variant of the
Elastic-Net estimator,49 as a penalty function along with 10-fold
cross-validation.

We also propose a piecewise polar coordinate system—where
the magnitude of NMR tensor anisotropy parameter, ζ, forms the
radial dimension and the asymmetry parameter, η, forms the angu-
lar dimension—to minimize the rank deficiency of the kernel and
obtain a more robust and unambiguous inversion. This polar coor-
dinate system also facilitates the classification of structural motifs
present in amorphous materials, e.g., the Qn species present in sil-
icate glasses, through their characteristic NMR tensor parameter
distributions.

We find the smooth-LASSO performance to be superior to
other commonly used regularization approaches and able to reg-
ularize the inverse solutions of spectra from both amorphous and

crystalline materials. It performs reliably with a variety of synthetic
purely anisotropic 1D spectra [VAS (90○) and MAS sidebands] gen-
erated from known (ground truth) bivariate uni-modal distributions
of nuclear shielding anisotropy parameters having different shapes
and widths. In the supplementary material, we also show similarly
good performance for the smooth-LASSO inversion of various syn-
thetic purely anisotropic 1D spectra arising from more challeng-
ing bivariate bi- and tri-modal distributions of nuclear shielding
anisotropy parameters.

When applied to experimental 2D solid-state NMR spectra cor-
relating isotropic and anisotropic frequencies, the smooth-LASSO
inversion provides a general approach for obtaining the trivariate
distribution of isotropic shifts and the nuclear interaction tensor
anisotropy and asymmetry parameters. We present the results from
applying the smooth-LASSO inversion to the previously published
experimental 2D 29Si NMR magic-angle flipping or magic-angle
turning spectra of six different alkali and alkaline earth silicate glass
compositions. We find that these results not only agree with the pre-
viously performed non-linear forward least-squares spectral analy-
ses but further provide an unparalleled level of quantitative details
about the distribution of 29Si nuclear shielding tensor parameters
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in these glasses. Here, we show how such results allow us to probe
the intra-tetrahedral distortions of Qn and the distance distributions
for silicon—non-bridging oxygen bonds onQ3 sites. More generally,
the smooth-LASSO-determined trivariate distributions of nuclear
shielding tensor parameters in a variety of glass compositions can
provide a wealth of new data for both supervised and unsupervised
machine learning efforts to classify structural motifs present in both
crystalline and amorphous solids.

We emphasize that the primary advantage of the smooth-
LASSO inversion over forward least-squares analyses is that it is
model free. While the forward least-squares analysis has an advan-
tage of mathematical simplicity, a main drawback is that it requires
an explicit model for the probability distribution of NMR tensor
parameters. Depending on the form of this explicit model, a forward
least-squares analysis can lead to solutions biased toward narrower
or broader parameter distributions. In contrast, the smooth-LASSO
method biases solutions toward broader distributions of NMR ten-
sor parameters. We show that such broadening of the inversion
solutions of NMR spectra can occur from increased noise, increased
MAS speeds, and spectral broadenings from spin relaxation or
homogeneous dipolar couplings.

The smooth-LASSO inversion presented in this study is general
and can be extended to anisotropic spectra arising from other sub-
spectral bases, such as the central transition of second-order broad-
ened quadrupolar nuclei. It can, for example, be readily applied
to 2D DAS spectra. In the case of 2D MQ-MAS, where there
is a non-uniform excitation and detection of spectral frequen-
cies, knowledge of the excitation and mixing radio frequency field
strengths will be needed to generate an accurate kernel of subspec-
tra. Of course, one-dimensional Bloch decay spectra of solids are
not purely anisotropic—neither static nor MAS spectra. In princi-
ple, one could extend the smooth-LASSO inversion to such spectra
with a suitable expansion of the subspectral basis to include the
variation due to isotropic shifts as well as other NMR interaction
parameters. The increasing size of the kernel with the increasing
dimensionality of the multi-variate distribution of NMR param-
eters, however, could lead to greater uncertainties in the inver-
sion solution as well as make the approach more computationally
intense.

SUPPLEMENTARY MATERIAL
See the supplementary material for an outline of the smooth-

LASSSO algorithm, additional examples of linear inversion, and
tables of tensor distribution moment analyses and optimum hyper-
parameters for the inversion of all synthetic datasets.
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APPENDIX: DETERMINING HYPERPARAMETERS
1. SVD truncation parameter, r

The hyperparameter, r, can be determined from the noise stan-
dard deviation57–59 or from more sophisticated methods such as
Akaike Information Criterion6,104 and entropy theory.48,105 Here, we
implement the maximum entropy48 based method. Let the dataset
entropy (0 ≤ E ≤ 1) be

E = − 1
log(l)

l∑
j=1 Sj log(Sj), (A1)

where l = min(m, n) and Sj is the jth normalized eigenvalue of the
matrix KKT given by

Sj = Ϛ2j
∑l

k=1 Ϛ2k
,

where Ϛj is the jth singular value. The contribution of the ith feature
to the total entropy E is defined by leave one out comparison, which
follows

∇Ei = E − Ei = E − E log(l) + Si log(Si)
log(l − 1) , (A2)

where Ei is the entropy with the ith contribution removed. Let c and
d be themean and the standard deviation of∇Ei’s, then the optimum
truncation index is given as

r = argmin
i

(∇Ei − c + d). (A3)

2. Hyperparameters, λ and α
When the number of parameters in the model space, f ∈ Rn,

exceeds the number of points in the data space, or more specifically,
the reduced data space, r, classic overfitting of the OLS problem is
a real issue. Given the ill-conditioned nature of the problem, the
condition n ≫ r is frequently encountered. In such cases, the reg-
ularization parameters α, λ > 0, in Eq. (32), can be interpreted as the
tuning parameters. Setting the tuning parameters too small leads to
the classic overfitting of the OLS problem with the resulting model
also fitting the noise. If the tuning parameters are set too large, the
modelmay never adequately describe the data. In practice, one wants
to avoid both extremes, and therefore, the challenge is finding the
values of λ and α that is just right.

Cross-validation106 is a widely used method in determining the
optimum hyperparameters. Cross-validation is a statistical learning
method for evaluating the generalized performance and stability of
the model. Our approach uses a stratified k-fold cross-validation
method: the signal s is divided into k subsets of roughly equal size,
mi ≈ m/k, called folds, where k is an integer number, typically cho-
sen as 5 or 10. In addition, a range of hyperparameter values, in this
case, λ ∈ Rnλ

+ and α ∈ Rnα
+ , are chosen on a uniform log scale, where

the subscript + denotes positive numbers and nλ and nα are the total
number of λ and α values. Out of k folds, one fold is set aside and is
called the test set. The remaining (k − 1)-folds are collectively called
the training set. In the following notation, we represent the ith test
set with si and the corresponding training set with s−i. Similarly, the
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corresponding kernels are designated with Ki and K−i, respectively.
For every training set, s−i, the model fi(λ, α) is evaluated, following

fi(λ,α) = argmin
f≥0 (

1
m −mi

∥K−i ⋅ f − s−i∥22 + λ∥f∥1) (A4)

for the range of λ and α values. Next, the mean square error (MSE),
called the test error of the test set, is evaluated using

εi(λ,α) = 1
mi
∑(Ki ⋅ fi(λ,α) − si)2, (A5)

where the summation runs over the elements of the test set, si. This
process is repeated k times while assigning a different fold as the test
set each time. The cross-validation error is then given as

CV(λ,α) = 1
m

k∑
i=1mi εi(λ,α). (A6)

The optimal λ∗ and α∗ hyperparameters are determined as the
argument that minimizes the cross-validation error, given as

λ∗,α∗ = argmin
λ,α
(∣CV(λ,α) − σ2e ∣), (A7)

where σe is the standard deviation of the noise.

DATA AVAILABILITY
The open-source python package, mrinversion, for imple-

menting the smooth-LASSO inversion described here along with
documentation for its installation and use is made available in
Zenodo at http://doi.org/10.5281/zenodo.3964643 (Ref. 54). The
documentation for mrinversion also includes example scripts for
obtaining inversions of all the experimental datasets presented in
this work, as well as numerous synthetic datasets. The experimen-
tal CSDM102 compliant datasets and their inversion solutions that
support the findings of this study are openly available in Zenodo at
http://doi.org/10.5281/zenodo.3964530 (Ref. 103).
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BM+`2�bBM; rB/i? Q7 i?2 i`m2 /Bbi`B#miBQM- r?2`2 2�+? /Bbi`B#miBQM Bb � #Bp�`B�i2 MQ`K�H /Bbi`B#miBQM
rBi? K2�M Uµx = 35 TTK - µy = 75 TTK V �M/ +Q``2H�iBQM +Q2{+B2Mi- rxy = 0.12X h?2 bi�M/�`/
/2pB�iBQMb- σx = σy Q7 i?2 /Bbi`B#miBQMb �`2 Ua@RV RXk8 TTK- Ua@kV kX8 TTK- Ua@jV eXk8 TTK- �M/
Ua@9V dX8 TTK- `2bT2+iBp2HvX h?2 +QMiQm`b �`2 /`�rM �i RyWX

a8



0

20

40

60

80

100

y 
/ p

pm

0.0
0.2
0.4
0.6
0.8
1.0

In
te

ns
ity

 a
.u

.

−0.01
0.00
0.01

0 0

20

40

60

80

100

0.0
0.2
0.4
0.6
0.8
1.0

In
te

ns
ity

 a
.u

.

−0.01
0.00
0.01

20

40

60

80

100

0

20

40

60

80

100

y 
/ p

pm

0.0
0.2
0.4
0.6
0.8
1.0

In
te

ns
ity

 a
.u

.

−0.01

0.01
0.00

0

20

40

60

80

100

y 
/ p

pm
y 

/ p
pm

0.0

0.2

0.4

0.6

0.8

1.0

In
te

ns
ity

 a
.u

.

−0.005
0.000
0.005

0

20

40

60

80

100

0 20 40 60 80 100
x / ppm

0

20

40

60

80

100

y 
/ p

pm

−1000100
frequency / ppm

0.0
0.2
0.4
0.6
0.8
1.0

In
te

ns
ity

 a
.u

.

−0.01
0.00
0.01 0.01

0 20 40 60 80 100
x / ppm

0

20

40

60

80

100

y 
/ p

pm

−1000100
frequency / ppm

0.0
0.2
0.4
0.6
0.8
1.0

In
te

ns
ity

 a
.u

.

−0.01
0.00

0 20 40 60 80 100
x / ppm

0

20

40

60

80

100

y 
/ p

pm
y 

/ p
pm

y 
/ p

pm

(B-1)

(B-2)

(B-3)

Ground truth distribution VAS (90°) Spectrum MAS Sideband SpectrumPrediction from
VAS (90°) Spectrum

Prediction from
MAS Sideband Spectrum

6B;m`2 aj, *QKT�`BbQM Q7 bKQQi?@G�aaP BMp2`bBQM Q7 bvMi?2iB+ Tm`2Hv �MBbQi`QTB+ bT2+i`�
Q`B;BM�iBM; 7`QK i?`22 /Bz2`2Mi #BKQ/�H #Bp�`B�i2 b?B2H/BM; i2MbQ` /Bbi`B#miBQMb �HQM; `Qrb H�#2H2/
"@R- "@k- �M/ "@jX AM i?2 }`bi +QHmKM �`2 i?2 ;`QmM/ i`mi? /Bbi`B#miBQMb �HQM; rBi? R. T`QD2+iBQMb
QMiQ i?2 +QQ`/BM�i2 �t2bX AM i?2 b2+QM/ �M/ 7Qm`i? +QHmKMb �`2 i?2 +Q``2bTQM/BM; bvMi?2iB+ o�a
U90◦V bT2+i`mK �M/ J�a bB/2#�M/ bT2+i`mK- `2bT2+iBp2Hv- rBi? MQBb2- σe = 0.005- �HQM; rBi? i?2
#2bi }i bT2+i`mK b?QrM BM `2/X �#Qp2 2�+? bT2+i`mK �`2 i?2 `2bB/m�HbX AM i?2 i?B`/ �M/ }7i?
+QHmKM �`2 i?2 +Q``2bTQM/BM; BMp2`bBQM bQHmiBQMb 7Q` i?2 b?B2H/BM; i2MbQ` /Bbi`B#miBQMb b?QrM rBi?
?BbiQ;`�K T`QD2+iBQMb QMiQ i?2 +QQ`/BM�i2 �t2bX h?2 +QMiQm`b �`2 /`�rM �i 2p2`v RyWX

h?2 #BKQ/�H /Bbi`B#miBQM H�#2H2/ "@j +QMbBbib Q7 � HBM2�` +QK#BM�iBQM Q7 irQ 2ti2M/2/ *xDx2F
/Bbi`B#miBQMb +�H+mH�i2/ BM i?2 ζ �M/ η +QQ`/BM�i2b �++Q`/BM; iQ

f"@j(ζ, η) =
1
2p

(XC)
A (ζ, η) + 1

2p
(XC)
B (ζ, η)

�M/ K�TT2/ QMiQ i?2 x �M/ y ;`B/X h?2 p(XC)
A (ζ, η) /Bbi`B#miBQM T�`�K2i2`b �`2 µζ,A = 75 TTK-

µη,A = 0.5- �M/ εA = 0.13 �M/ i?2 p(XC)
B (ζ, η) /Bbi`B#miBQM T�`�K2i2`b �`2 µζ,B = −65 TTK- µη,B = 0-

�M/ εB = 0.16X
AM i?2 b2+QM/ �M/ 7Qm`i? +QHmKMb Q7 6B;X aj �`2 i?2 Tm`2 �MBbQi`QTB+ R. o�a 90◦ �M/ J�a

bBKmH�iBQMb Q7 i?2 `2bT2+iBp2 #BKQ/�H /Bbi`B#miBQM BM i?2 }`bi +QHmKMX h?2 THQi Bb #H�+F BM i?2
bBKmH�iBQM rBi? �//2/ MQBb2 Q7 σe = 0.005- �M/ i?2 THQi BM `2/ Bb i?2 }iX PM iQT Q7 i?2 THQib Bb
i?2 }i `2bB/m�HbX AM i?2 i?B`/ �M/ }7i? +QHmKMb �`2 i?2 bQHmiBQM 7Q`K i?2 aKQQi?@G�aaP BMp2`bBQM
K2i?Q/ �TTHB2/ iQ i?2 o�a �M/ J�a bT2+i`�- `2bT2+iBp2HvX h?2 bi�iBbiB+b Q7 i?2 #BKQ/�H /Bbi`B#miBQM
7`QK 2�+? BMp2`bBQM Bb b?QrM BM h�#H2 aRX
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a9 h`B@KQ/�H /Bbi`B#miBQMb
6B;m`2 a9 /2TB+ib i?2 `2bmHib Q7 i?2 bKQQi?@G�aaP BMp2`bBQM QM bT2+i`� Q`B;BM�iBM; 7`QK p�`BQmb
;`QmM/ i`mi? i`BKQ/�H /Bbi`B#miBQMbX h?2 i`BKQ/�H /Bbi`B#miBQM H�#2H2/ h@R BM 6B;X a9 +QMbBbib Q7 �
HBM2�` +QK#BM�iBQM Q7 irQ 2ti2M/2/ *xDx2F /Bbi`B#miBQMb �M/ QM2 *xDx2F /Bbi`B#miBQM +�H+mH�i2/ BM
i?2 ζ �M/ η +QQ`/BM�i2b �++Q`/BM; iQ

fhR(ζ, η) =
4
9p

(xc)
A (ζ, η) + 1

3p
(xc)
B (ζ, η) + 2

9p
(c)
C (ζ, η), URV

�M/ K�TT2/ QMiQ i?2 x �M/ y ;`B/X h?2 p(xc)A (ζ, η) T�`�K2i2`b �`2 µζ,A = 65 TTK- µη,A = 0-
εA = 0.13- p(xc)B (ζ, η) T�`�K2i2`b �`2 µζ,B = 85 TTK- µη,B = 0.8- εB = 0.13- �M/ p(c)C (ζ, η) T�`�K2i2`b
�`2 σc,C = 5.77 TTKX

h?2 i`BKQ/�H /Bbi`B#miBQM H�#2H2/ h@k +QMbBbib Q7 � HBM2�` +QK#BM�iBQM Q7 i?`22 2ti2M/2/ *xDx2F
/Bbi`B#miBQMb +�H+mH�i2/ BM i?2 ζ �M/ η +QQ`/BM�i2b �++Q`/BM; iQ

fhk(ζ, η) =
1
4p

(xc)
A (ζ, η) + 1

2p
(xc)
B (ζ, η) + 1

4p
(xc)
C (ζ, η), UkV

�M/ K�TT2/ QMiQ i?2 x �M/ y ;`B/X h?2 p(xc)A (ζ, η) T�`�K2i2`b �`2 µζ,A = 45 TTK- µη,A = 0.1-
εA = 0.2- p(xc)B (ζ, η) T�`�K2i2`b �`2 µζ,B = 85 TTK- µη,B = 0.3- εB = 0.1- �M/ p(xc)C (ζ, η) T�`�K2i2`b
�`2 µζ,C = −55 TTK- µη,C = 0- εC = 0.2X

h?2 i`BKQ/�H /Bbi`B#miBQM H�#2H2/ h@j +QMbBbib Q7 � HBM2�` +QK#BM�iBQM Q7 irQ 2ti2M/2/ *xDx2F
/Bbi`B#miBQMb �M/ QM2 *xDx2F /Bbi`B#miBQM +�H+mH�i2/ BM i?2 ζ �M/ η +QQ`/BM�i2b �++Q`/BM; iQ

fhj(ζ, η) =
3
5p

(xc)
A (ζ, η) + 1

5p
(xc)
B (ζ, η) + 1

5p
(c)
C (ζ, η) UjV

�M/ K�TT2/ QMiQ i?2 x �M/ y ;`B/X h?2 p(xc)A (ζ, η) T�`�K2i2`b �`2 µζ,A = 80 TTK- µη,A = 0.6-
εA = 0.17- p(xc)B (ζ, η) T�`�K2i2`b �`2 µζ,B = −70 TTK- µη,B = 0.2- εB = 0.2- �M/ p(c)C (ζ, η) T�`�K2i2`b
�`2 σc,C = 6.93 TTKX

h?2 THQib �`2 Q`;�MBx2/ BM i?2 b�K2 K�MM2` �b 6B;X ajX �b #27Q`2- :�mbbB�M MQBb2 Q7 σe = 0.005
r�b mb2/ BM ;2M2`�iBM; 2�+? bvMi?2iB+ bT2+i`mK BM 6B;X a9X AM �HH i?`22 +�b2b- i?2 BMp2`bBQM Q7
i?2 bvMi?2iB+ o�a U90◦V �M/ J�a bB/2#�M/ bT2+i`� `2+Qp2`b i`BKQ/�H /Bbi`B#miBQMb rBi? `2bQHp2/
KQ/2b �M/ Bb +QMbBbi2Mi rBi? i?2 `2bT2+iBp2 ;`QmM/ i`mi? /Bbi`B#miBQMbX h�#H2 aR HBbib i?2 bi�iBbiB+bě
T`Q#�#BHBiv- K2�M- �M/ bi�M/�`/ /2pB�iBQMěQ7 i?2 BM/BpB/m�H KQ/2b Q7 i?2 #Bp�`B�i2 /Bbi`B#miBQMb
7Q` i?2 ;`QmM/ i`mi? �M/ `2+Qp2`2/ /Bbi`B#miBQMbX AM �HH +�b2b- ;QQ/ �;`22K2Mi Bb Q#i�BM2/ rBi? i?2
K2�M p�Hm2b Q7 i?2 ;`QmM/ i`mi? /Bbi`B#miBQMbX

J�i?2K�iB+�HHv- i?2 BMi2;`�iBQM pQHmK2 Q7 i?2 f(x, y) /Bbi`B#miBQM Bb +QMb2`p2/ �M/ Bb 2[m�H iQ
i?2 �`2� mM/2` i?2 bT2+i`mK- i?�i Bb-

∫
f(x, y)dxdy =

∫
s(ν)dν .

LQi2- i?2 �#Qp2 BMi2;`�H 2[m�iBQM Bb p�HB/ #2+�mb2 i?2 F2`M2H- K- Bb MQ`K�HBx2/ bm+? i?�i 2p2`v
#�bBb bT2+i`mK rBi?BM i?2 F2`M2H Bb Q7 mMBi �`2�X �Hi?Qm;? i?2 iQi�H pQHmK2 Q7 i?2 T`2/B+i2/ KmHiB@
KQ/�H /Bbi`B#miBQM Bb +QMb2`p2/- i?2 pQHmK2 mM/2` i?2 BM/BpB/m�H KQ/2b K�v MQi K�i+? i?2 ;`QmM/
i`mi? /Bbi`B#miBQMX LQM2i?2H2bb- BM i?2b2 i`BKQ/�H BMp2`bBQM 2t�KTH2b- `2�bQM�#Hv ;QQ/ �;`22K2Mi
Bb Q#i�BM2/ 7Q` i?2 pQHmK2 `�iBQ Q7 i?2 i?`22 KQ/2b- �b b22M BM h�#H2 aRX P7 +Qm`b2- [m�MiB7vBM;
BMi2;`�i2/ KQ/2 pQHmK2b #2+QK2b KQ`2 +?�HH2M;BM; r?2M /Bbi`B#miBQMb �`2 +HQb2 Q` Qp2`H�TTBM;X
h?2 [m�HBiv Q7 i?2 BMp2`bBQM rBHH /2+`2�b2 rBi? BM+`2�bBM; MQBb2- K�FBM; ?B;?2` KQ/�H /Bbi`B#miBQMb
?�`/2` iQ BMp2`iX �b i?2 BMp2`bBQM ;2ib KQ`2 +?�HH2M;BM;- i?2 BMi2;`�i2/ pQHmK2 Q7 i?2 bQHmiBQM
rBHH bi�`i iQ /BbT2`b2 BMiQ 2ti`�M2Qmb bQHmiBQMb �b +�M #2 b22M BM i?2 h@j /Bbi`B#miBQM BMp2`bBQMb Q7
6B;X a9X

ad
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o�a U90◦V bT2+i`mK �M/ J�a bB/2#�M/ bT2+i`mK- `2bT2+iBp2Hv- rBi? MQBb2- σe = 0.005- �HQM;
rBi? i?2 #2bi }i bT2+i`mK b?QrM BM `2/X �#Qp2 2�+? bT2+i`mK �`2 i?2 `2bB/m�HbX AM i?2 i?B`/ �M/
}7i? +QHmKMb �`2 i?2 +Q``2bTQM/BM; BMp2`bBQM bQHmiBQMb 7Q` i?2 b?B2H/BM; i2MbQ` /Bbi`B#miBQMb b?QrM
rBi? ?BbiQ;`�K T`QD2+iBQMb QMiQ i?2 +QQ`/BM�i2 �t2bX h?2 +QMiQm`b �`2 /`�rM �i 2p2`v RyWX
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90◦ bTBMMBM; bT2+i`mK J�a bB/2#�M/ bT2+i`mK
h2bi σe α∗/10−6 λ∗/10−6 a∗/10−6 b∗ α∗/10−6 λ∗/10−6 a∗/10−6 b∗

l@R yXyy8 kXN3 RXkd 9Xk8 yXdy kXN3 RX3j 9X3R yXej
l@k yXyy8 RX3j RXkd jXRR yX8N RkXd9 RX3j R9X83 yX3d
l@j yXyy8 RRXj eNX8 3yX3 yXR9 eNX8 9kX3 RRkXj yXek
l@9 yXyy8 yX3j jXe 9X9 yXk 8X3 jXe NX9 yXek
1@R yXyyy8 yXy9j yXye yXRy yX9R yXR3 yXRj yXjR yX8N
1@k yXyyR yX93 yXj3 yX3e yX8e yXR3 yXRj yXjR yX8N
1@j yXyR RXRj RX3j kXNe yXj3 dX38 kXe9 RyX93 yXd8
1@9 yXyk kXN3 8X9e 3X9j yXj8 dX38 jXdN RRXe9 yXed
a@R yXyy8 yXyyyj kXe9 kXe9 yXyyyR yXyyR3 RXkd RXkd yXyyR
a@k yXyy8 yXykj kXe9 kX3d yXy3 yXyyy9 RX3j RX3j yXyyyk
a@j yXyy8 8X9e RX3j dXkN yXd8 jXje yXek jXN3 yX38
a@9 yXyy8 R9Xj3 RXkd R8Xd yXNk R9X9 yX3N R8Xj yXN9
h@R yXyy8 yX3N RX3j kXdk yXjj yX9j RX3j kXke yXRN
h@k yXyy8 yX8R yXek RXRj yX98 dX38 RX3j NXe3 yX3R
h@j yXyy8 RkXd RXdj R9X8 yX33 RekX9 kXe9 Re8Xy yXN3

h�#H2 ak, *QKT�`BbQM Q7 i?2 QTiBKmK ?vT2`T�`�K2i2`b- α∗ �M/ λ∗- �b r2HH �b i?2 �Hi2`M�iBp2
QTiBKmK ?vT2`T�`�K2i2`b- a∗ �M/ b∗- Q#i�BM2/ 7`QK +`Qbb@p�HB/�iBQM Q7 i?2 BMp2`bBQM Q7 i?2
o�a U90◦V �M/ J�a bB/2#�M/b bT2+i`�X h?2 σe p�Hm2 Bb i?2 MQBb2 bi�M/�`/ /2pB�iBQM �//2/ iQ
2�+? bBKmH�i2/ bT2+i`mKX h?2 α∗ �M/ λ∗ p�Hm2b �`2 /2i2`KBM2/ Qp2` � 20 × 20 α@λ ;`B/ mbBM; �
i2M@7QH/ +`Qbb@p�HB/�iBQM K2i?Q/ 7Q` i?2 o�a U90◦V �M/ J�a bB/2#�M/b bT2+i`mK BMp2`bBQMX h?2
�Hi2`M�iBp2 ?vT2`T�`�K2i2`b- a∗ �M/ b∗- �`2 /2`Bp2/ 7`QK α∗ �M/ λ∗ �++Q`/BM; iQ 1[X Uj9V Q7 i?2
K�BM i2tiX h?2 ao. i`mM+�iBQM BM/2t- r- /2T2M/b QM i?2 F2`M2H K- r?B+? BM im`M /2T2M/b QM
i?2 x@y ;`B/ /BK2MbBQMb �M/ i?2 �MBbQi`QTB+ /BK2MbBQM Q7 i?2 bT2+i`mKX o�Hm2b Q7 r = 62 7Q` �HH
o�a U90◦V BMp2`bBQMb �M/ r = 31 7Q` �HH J�a bB/2#�M/ BMp2`bBQMb �`2 +?Qb2M mbBM; i?2 K�tBKmK
2Mi`QTv K2i?Q/(R) QmiHBM2/ BM �TT2M/Bt �R Q7 i?2 K�BM i2tiX h?2b2 p�Hm2b `2K�BM i?2 b�K2 bBM+2
i?2 x@y ;`B/ �M/ i?2 �MBbQi`QTB+ /BK2MbBQMb �`2 B/2MiB+�H 7Q` �HH bvMi?2iB+ /�i�b2i BMp2`bBQMbX

aRy



νr f F>x r α∗/10−6 λ∗/10−6 a∗/10−6 b∗

yX3Rk8∗ jR yXR8 yXR8 yXj yX8
RXyyyy∗ jR yXy3 yXy3 yXRe yX8
RXR3d8 jy yXkk yXR yXjk yXe3
RXjd8y kd yXR yX9e 8Xe9 yXR3
RX8ek8 k9 yXkk yX9e yXe3 yXjk
kXyyyy kR yXkk yXR yXjk yXe3
kX8yyy R3 yXjR yXye yXjd yX38
jXyyyy R3 yX8e RdX3 R3Xj yXyj
9Xyyyy R8 jXk yXjk jX93 yXNR
3Xyyyy Rk Ry yXjk RyXjk yXNd

h�#H2 aj, h?2 ?vT2`T�`�K2i2`b Q7 i?2 QTiBKmK bQHmiBQM Q7 i?2 J�a bB/2#�M/b BMp2`bBQM �b �
7mM+iBQM Q7 bTBMMBM; bT22/X >2`2- r- Bb i?2 MmK#2` Q7 bBM;mH�` p�Hm2b `2i�BM2/ BM i?2 bQHmiBQMX h?2
K�tBKmK MmK#2` Q7 bBM;mH�` p�Hm2b Bb jkX avMi?2iB+ /�i�b2ib �M/ BMp2`bBQMb MQi b?QrM BM K�BM
i2ti �`2 K�`F2/ rBi? �M �bi2`BbFX

a8 aTBMMBM; aT22/ >vT2`T�`�K2i2`b
h�#H2 aj ;Bp2b i?2 QTiBKmK ?vT2`T�`�K2i2`b 7Q` i?2 bKQQi?@G�aaP BMp2`bBQMb Q7 6B;X 3 BM i?2
K�BM i2tiX

ae *QKT�`BbQM Q7 _2;mH�`Bx�iBQM J2i?Q/b
AM 6B;X d Q7 i?2 K�BM K�Mmb+`BTi- r2 b?Qr i?2 +QKT�`BbQM Q7 /Bz2`2Mi `2;mH�`Bx�iBQM K2i?Q/bX
h�#H2 a9 ;Bp2b i?2 QTiBKmK ?vT2`T�`�K2i2`b Q#i�BM2/X AM i?Qb2 2t�KTH2b BKTH2K2Mi i?2 bQHp2`b
7`QK i?2 b+BFBi@H2�`M(k) HB#`�`v- r?B+? KBMBKBx2b i?2 7QHHQrBM; Q#D2+iBp2 7mM+iBQMb

�`;KBM
f≥0

(
1

2m
‖s−K · f‖22 + λl‖f‖1

)
, U9V

�M/
�`;KBM

f≥0

(
1

2m
‖s−K · f‖22 + αel1,`�iBQ‖f‖1 +

1

2
αe(1− l1,`�iBQ)‖f‖22

)
, U8V

7Q` $1 �M/ 2H�biB+ M2i `2;mH�`Bx�iBQM- `2bT2+iBp2HvX >2`2- λl Bb ?vT2`T�`�K2i2` 7Q` i?2 $1 i2`K BM
1[X U9V- �M/ αe- $1,`�iBQ �`2 i?2 iQi�H `2;mH�`Bx�iBQM �M/ `2H�iBp2 7`�+iBQM Q7 $1 i2`K BM i?2 2H�biB+ M2i
`2;mH�`Bx�iBQM Q7 1[X U8V- `2bT2+iBp2HvX h?2 i2`K- m- Bb i?2 b�KTHBM; bBx2 Q7 i?2 b�KTH2 p2+iQ` s- E
Bb i?2 F2`M2H- �M/ 7 Bb i?2 bQHmiBQMX

_272`2M+2b
(R) _X o�`b?�pbFv- �X :QiiHB2#- JX GBMB�H- �M/ .X >Q`MX LQp2H mMbmT2`pBb2/ 72�im`2 }Hi2`BM; Q7

#BQHQ;B+�H /�i�X "BQBM7Q`K�iB+b- kk,28yd Ĝ 28Rj- J�`@yd@kyyd kyyeX

(k) G�`b "mBiBM+F- :BHH2b GQmTT2- J�i?B2m "HQM/2H- 6�#B�M S2/`2;Qb�- �M/`2�b Jm2HH2`- PHBpB2`
:`Bb2H- oH�/ LB+mH�2- S2i2` S`2ii2M?Q72`- �H2t�M/`2 :`�K7Q`i- C�[m2b :`Q#H2`- _Q#2`i G�viQM-

aRR



C�F2 o�M/2`SH�b- �`M�m/ CQHv- "`B�M >QHi- �M/ :�ďH o�`Q[m�mtX �SA /2bB;M 7Q` K�+?BM2
H2�`MBM; bQ7ir�`2, 2tT2`B2M+2b 7`QK i?2 b+BFBi@H2�`M T`QD2+iX AM 1*JG SE.. qQ`Fb?QT,
G�M;m�;2b 7Q` .�i� JBMBM; �M/ J�+?BM2 G2�`MBM;- kyRjX

aRk



:`B/
bBx2 `2bQHmiBQMfTTK2 λ∗

l /10
−6

"1

20× 20 5.81× 5.81 RXkj
30× 30 3.87× 3.87 yXj8
40× 40 2.91× 2.91 yXj8
50× 50 2.32× 2.32 yXRN

bBx2 `2bQHmiBQMfTTK2 α∗
e/10

−6 l∗1,`�iBQ

1H�biB+ M2i
20× 20 5.81× 5.81 ReXN yXd
30× 30 3.87× 3.87 kjX9 yX8
40× 40 2.91× 2.91 jjXy yXj8
50× 50 2.32× 2.32 9eXj yXk8

bBx2 `2bQHmiBQMfTTK2 α∗/10−6 λ∗/10−6 a∗/10−6 b∗

a@G�aaP
20× 20 5.81× 5.81 kX38 kXjR 8XRe yX88
30× 30 3.87× 3.87 R8Xk RXkj ReX9 yXNj
40× 40 2.91× 2.91 j8X3 yXee j8Xdd yXN3
50× 50 2.32× 2.32 3RXR yXee 3RXdd yXNN

h�#H2 a9, h?2 ?vT2`T�`�K2i2`b +Q``2bTQM/BM; iQ i?2 QTiBKmK bQHmiBQM 7Q` i?2 "1- 2H�biB+ M2i- �M/
bKQQi?@G�aaP `2;mH�`Bx2/ HBM2�` T`Q#H2Kb �b � 7mM+iBQM Q7 i?2 ;`B/@`2bQHmiBQMX

aRj


